首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
Three two‐dimensional (2D) coordination complexes, namely [Ca2(HL)2(H2O)5]n · 2nH2O ( 1 ), [Sr(HL)(H2O)3]n · nH2O ( 2 ), and [Ba(HL)(H2O)3]n · nH2O ( 3 ) [H3L = 3‐(3‐carboxy‐phenoxy) phthalic acid], were synthesized by using the ligand H3L and alkaline earth metals. Structural analysis reveals that the structures of complexes 1 – 3 can be described as 2D networks with the point (Schälfli) symbol for net: {312 · 414 · 52} topology. Additionally, the thermal stability and solid‐state luminescent properties of compounds 1 – 3 were investigated at room temperature. The quantum yield (QY) of compound 2 is 10.75 %, which is much higher than the QY of the free H3L ligand (QYH3L < 1 %).  相似文献   

2.
Eight new two‐ligand complexes of copper(II) with 1,10‐phenanthroline and one of four different α‐hydroxy‐carboxylic acids (glycolic, lactic, mandelic and benzylic) were prepared. The complexes of general formula [Cu(HL)2(phen)] · nH2O (HL = monodeprotonated acid) ( 1 – 4 ) were characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements and thermo‐gravimetric analysis. The complexes of general formulae [Cu(HL)(phen)2](HL) · H2L · nSolv [ 1 a (HL = HGLYO, n = 1, Solv = MeCN) and 3 a (HL = HMANO, n = 0)] and [Cu(L)(phen)(OH2)] · nH2O [ 2 a (L = LACO2–, n = 4) and 4 a (L = BENO2–, n = 2)] were characterized by X‐ray diffractometry. In all these latter a pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, the distortion of which towards a trigonal bipyramidal configuration has been evaluated in terms of the parameter τ. In 1 a and 3 a there are three forms of α‐hydroxycarboxylic acid: a monodentate monoanion, a monoanionic counterion, and a neutral molecule lying in the outer coordination sphere; in 2 a and 4 a the α‐hydroxycarboxylic acid is a bidentate dianion coordinating through carboxyl and hydroxyl oxygens.  相似文献   

3.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

4.
Abstract

The reaction between 5,5-dimethyl-2-thioxoimidazolidin-4-one (H2L) and [PdCl4]2- has been studied in aqueous solution by potentiometric and spectrophotometric measurements. In the presence of the palladium salt, H2L is completely monodeprotonated (HL?); from spectrophotometric measurements, only two complexes having 1:1 and 1:2 Pd/ligand mol ratios have been identified. Potentiometric titrations, carried out on solutions with 1:1, 1:2, 1:3 and 1:4 metal/ligand mol ratios, show that these complexes must be formulated as Pd(HL)2 and [Pd2(HL)2(μ-H2O)(μ-OH)]+. Ionization constants of the pure ligand and formation constants of the complexes give pH distribution curves of the various species and the spectra of the two complexes. From MeOH, S-coordinated Pd(H2L)nCl2 (n = 2–4) complexes have been separated in the solid state; from water, two complexes of formula Pd(H2L)(HL)Cl and Pd(HL)Cl have been obtained with HL? N,S-coordinated to the metal.  相似文献   

5.
Three new ZnII coordination polymers, [Zn(bpe)(HL)2(H2O)]n ( 1 ), {[Zn(bpe)(L)] · H2O}n ( 2 ), and [Zn2Ca(bpe)(HL)2(L)2]n ( 3 ) [H2L = 5‐methoxyisophthalic acid and bpe = 1,2‐dis(4‐pyridyl) ethylene], were hydrothermally synthesized under different pH values and bases. Their structures were determined by single‐crystal X‐ray diffraction and further characterized by elemental analyses and IR spectroscopy. Polymer 1 is formed at pH = 4 and has a 1D chain structure. These 1D chains are linked by hydrogen bonds to afford a 1D double chain and further to form a threefold interpenetrating network. At pH = 7, a 2D layer structure of 2 with sql topology is formed. By using calcium hydroxide as base for the synthesis of 3 , a 3D network with pcu topology is obtained. These structural differences among 1 – 3 indicate that pH value and the identity of the base play important role in defining the overall structures of metal‐organic frameworks. In addition, the fluorescent properties of 1 – 3 are discussed.  相似文献   

6.
Four CdII metal coordination polymers, namely, [Cd(HL)(H2O)3]n ( 1 ), [Cd(HL)(4,4′‐bpy)]n · nH2O ( 2 ), [Cd3(L)2(2,2′‐bpy)3(H2O)3]n · 2nH2O ( 3 ), and [Cd3(L)2(phen)2(H2O)]n · 2.5nH2O ( 4 ) [H3L = 3‐(3‐carboxyphenoxy) phthalic acid, 4,4′‐bpy = 4,4′‐bipyridine, 2,2′‐bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline], were synthesized and structurally characterized by X‐ray diffraction, elemental analysis, and IR spectroscopy. Single‐crystal X‐ray analyses reveal that complexes 1 – 3 have different one‐dimensional (1D) chain structures including zigzag chain, ladder chain, and helical chain, whereas complex 4 shows a 0D trinuclear motif. These low‐dimensional complexes are further extended to 3D supramolecular networks by intermolecular π–π interactions and hydrogen bonds. The ligand H3L exhibits five coordination modes: μ1‐η2‐chelating/μ1‐η2‐chelating, μ1‐η2‐chelating/μ1‐η2‐chelating/μ1‐η2‐chelating, μ1‐η2‐chelating/μ1‐η2‐chelating/μ1‐η1‐bridging, μ1‐η2‐chelating/μ2‐η2‐bridging/μ2‐η11‐bridging, and μ2‐η2‐chelating:η1‐bridging/μ2‐η2‐chelating:η1‐bridging/μ1‐η1‐bridging. Moreover, the photoluminescent properties of complexes 1 – 4 were studied in the solid‐state at room temperature.  相似文献   

7.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

8.
The acid–base properties of the N-substituted amino acid HL [HL = N-2-(4-amino-1,6-dihydro-1-methyl-5-nitroso-6-oxopyrimidinyl)-L-histidine] and its reactivity towards the CuII ion have been measured by potentiometric and spectrophotometric techniques in aqueous solution at 25 °C and 0.1 M KCl ionic strength. These studies show that the neutral HL compound is present in aqueous solution (3–7 pH range) in the zwitterionic form with the diprotonated imidazolic residue. Studies of HL/CuII mixtures reveal the existence of complex species with the neutral ligand, HL and containing the deprotonated L ligand. By controlling the reaction conditions, four solid phases of stoichiometry: CuLCl(H2O)6, Cu2LCl3(H2O)8, CuL2(H2O)6 and Cu(HL)2Cl2(H2O)6 were isolated and characterised by i.r. and electronic spectroscopy, thermal techniques and magnetic measurements.  相似文献   

9.
Assembly of 5-sulfosalicylic acid (H3L) and d10 transition metal ions (CdII, AgI) with the neutral N-donor ligands produces five new complexes: [Cd2(HL)2(4,4′-bipy)3]n·2nH2O (1), {[Cd2(μ2-HCO2)2(4,4′-bipy)2(H2O)4][Cd(HL)2(4,4′-bipy)(H2O)2]}n (2), {[Cd(4,4′-bipy)(H2O)4][HL]·H2O}n (3), [Cd(HL)(dpp)2(H2O)]n·4nH2O (4), {[Ag(4,4′-bipy)][Hhbs]}n (5) (4,4′-bipy=4,4′-bipyridine, dpp=1,3-di(pyridin-4-yl)propane, H2hbs=4-hydroxybenzenesulfonic acid, the decarboxylation product of H3L). Complex 1 adopts a 5-connected 3D bilayer topology. Complex 2 has the herring-bone and ladder chain, which are extended to a 3D network via hydrogen bonding. In 3–4 complexes, 3 is a 3D supermolecular structure formed by polymeric chains and 2D network of HL2−, while 4 gives the double-stranded chains. In 5, ladder arrays are stacked with the 2D networks of Hhbs anions in an –ABAB– sequence. Complexes 1–4 display green luminescences in solid state at room temperature, while emission spectra of 3 and 4 show obvious blue-shifts at low temperature.  相似文献   

10.
The dimer [{(η6-p-cymene)RuCl}2(μ-Cl)2] (cymene=MeC6H4iPr) reacts with N,N′-bis(p-tolyl)-N′′-(2-pyridinylmethyl)guanidine ( H2L1 ) and N,N′-bis(p-tolyl)-N′′-(2-diphenylphosphanoethyl)guanidine ( H2L2 ), in the presence of NaSbF6, giving rise to chlorido compounds of formula [(η6-p-cymene)RuCl( H2L )][SbF6] ( H2L = H2L1 ( 1 ), H2L2 ( 2 )) in which the guanidine ligand adopts a κ2 chelate coordination mode. The related ligand (S)-N,N′-bis(p-tolyl)-N′′-(1-isopropyl, 2-diphenylphosphano ethyl)guanidine ( H2L3 ) affords mixtures of the corresponding chlorido compound [(η6-p-cymene)RuCl( H2L3 )][SbF6] ( 3 ) together with the complexes [(η6-p-cymene)RuCl2( H3L3 )][SbF6] ( 4 ) and [(η6-p-cymene)Ru(κ3N,N′,P- HL3 )][SbF6] ( 10 ) which contain phosphano-guanidinium and phosphano-guanidinate ions acting as monodentate and tridentate ligand, respectively. Compounds 1 , 2 and mixture of 3 / 4 / 10 react with AgSbF6 rendering the cationic aqua-complexes [(η6-p-cymene)Ru( H2L )(OH2)][SbF6]2 ( H2L = H2L1 ( 5 ), H2L2 ( 6 ), H2L3 ( 7 )). These aqua-complexes exhibit a temperature-dependent fluxional process in solution. Experimental NMR studies and DFT theoretical calculations on complex 6 suggest that the process involves the exchange between two rotamers around one of the C−N guanidine bonds. Treatment of 5 – 7 with NaHCO3 renders the complexes [(η6-p-cymene)Ru(κ3N,N′,N′′- HL1 )][SbF6] ( 8 ) and [(η6-p-cymene)Ru(κ3N,N′,P- HL )][SbF6] ( HL = HL2 ( 9 ), HL3 ( 10 )), respectively, in which the HL ligand adopts a fac κ3 coordination mode. The new complexes have been characterized by analytical and spectroscopic means, including the determination of the crystal structures of the compounds 1 , 2 , 5 , 9 and 10 , by X-ray diffractometric methods.  相似文献   

11.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The hydrothermal reaction of the tricarboxylate ligand 5‐(carboxymethoxy)isophthalic acid (H3L) with ZnII, CdII, and SnII salts in the presence of the bisbenzoimidazole coligand 1, 3‐bis(benzimidazol‐2‐yl)‐2‐oxapropane (bbop) afforded the coordination polymers, [Zn(HL)(bbop)]n ( 1 ), [Cd(HL)(bbop)]n ( 2 ), and {[H2(bbop)][Sn2L2]}n ( 3 ). The complexes were characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction analyses, thermogravimetric analyses, and fluorescence properties. The structures of complexes 1 and 2 are constructed by 1D chains and show strong blue luminescence emission. The structure of complex 3 is a 2D anionic dilayer, and shows a vase‐like porous structure occupied by the bulky [H2(bbop)]2+ cation, which is an uncommon structural feature in transition metal coordination polymers. The three complexes are further connected by hydrogen bonds to form 3D supramolecular architectures.  相似文献   

13.
Two heterometallic [K4M4(HL)4(H2O)12] (M=Co (1), Ni (2)) and two homometallic [M2L(H2O)7]?·?2H2O ((M=Co (3), Ni (4)) (H4L?=?(2-(bis(carboxymethyl)amino) terephthalic acid) have been synthesized and characterized by elemental analysis, FT-IR spectrum, and single-crystal X-ray diffraction. The isomorphous 1 and 2 contain K+ and M2+, in which K+ were bridged with M2+ through μ-HL3? and μ-H2O, leading to 2-D layer structures. The isomorphous 3 and 4 show homometallic binuclear complexes with μ-HL3? as the bridging ligand. Various H-bonds including different H-bond helical chains form, by which 3 and 4 assemble into 3-D supramolecular frameworks. TG analysis indicates that the decomposition temperatures are [K4M4(HL)4(H2O)12] (1)?>?[M2L(H2O)7]?·?2H2O (3)?>?H4L.  相似文献   

14.
Three new complexes constructed by 1‐adamantaneacetic acid (HL), [Zn2L4]n ( 1 ), [MnL2(4,4′‐bipy)(H2O)2]n· 2n(HL) ( 2 ) and MnL2(2,2'‐bipy)(H2O)2 ( 3 ), have been hydrothermally synthesized. X‐ray single crystal diffraction analyses reveal that both 1 and 2 are infinite 1D chains along b axis. 2 and 3 have an octahedral coordination and show the supramolecular structures which are formed on the basis of the connectivity of intermolecular hydrogen bonds. The deprotonated L? ligands coordinate the M(II) atoms with many coordination modes in the title complexes.  相似文献   

15.
Ji  Ning-Ning  Shi  Zhi-Qiang  Hu  Hai-Liang 《Structural chemistry》2019,30(1):227-235

Two coordination polymers, namely [Mn(L)2(H2O)2]n (1) and [Cd2(L)4(H2O)4]n (2) {HL?=?(benzotriazol-1-yloxy)-acetic acid}, have been synthesized and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy and elemental analysis. The results reveal that CP1 has 1D double chain structure, while CP2 features a 1D infinite chain structure. Additionally, there both exist O–H···O and O–H···N hydrogen bonds in CP1 and CP2, forming 3D supramolecular structures, respectively. UV-vis absorption spectra of CP1, and photoluminescence property of CP2, have been examined in solid state at room temperature. The result on optical energy gap of 2.80 eV indicates that CP1 is a potential semiconductive material.

  相似文献   

16.
The interactions between AgnO-(n=1-8) and H2 (or D2) were explored by combination of the mass spectroscopy experiments and density function theory (DFT) calculations. The experiments found that all oxygen atoms in AgnO-(n=1-8) are inert in the interactions with H2 or D2 at the low temperature of 150 K, which is in contrast to their high reactivity with CO under the same condition. These observations are parallel with the preferential oxidation (PROX) of CO in excess hydrogen catalyzed by dispersed silver species in the condensed phase. Possible reaction paths between AgnO-(n=1-8) and H2 were explored using DFT calculations. The results indicated that adsorption of H2 on any site of AgnO-(n=1-8) is extremely weak, and oxidation of H2 by any kind of oxygen in AgnO-(n=1-8) has an apparent barrier strongly dependent on the adsorption style of the "O". These experiments and theoretical results about cluster reactions provided molecule-level insights into the activity of atomic oxygen on real silver catalysts.  相似文献   

17.
The energy, the Gibbs energy of the reaction OH-·(H2O) n- 1 + H2O = OH-·(H2O) n are calculated by the Monte-Carlo method with a large canonical ensemble for n = 1, ..., 20. The ion-waternonpair interaction potential was obtained by numerical fitting of calculated Gibbs energy and entropy of (H2O)n clusters (n = 1, ..., 5) to experimental ones. A good fit to experiment both of the internal energy and the Gibbs energy can be obtained in terms of a model allowing for nonpair interaction. It is shown that constructing an ion-water interaction potential without allowance for the entropy factor can lead to considerable errors in the Gibbs energy of cluster formation and in the nucleation rate.  相似文献   

18.
在水热条件下合成了基于四氟对苯二甲酸的2个二维微孔配位聚合物{[Cd2(IP)2(tfBDC)2(H2O)2]·H2O}n(1)和{[Mn2(IP)2(tfBDC)2(H2O)2]·H2O}n(2)(tfBDC=2,3,5,6-四氟对苯二甲酸,IP=1-H-咪唑[4,5-f][1,10]-菲咯啉)。二维层状结构是44-网状结构,三维超分子结构是由氢键连接相邻的二维层状结构而形成的。2个配位聚合物均用元素分析、热重分析(TGA)、粉末衍射(PXRD)、红外光谱(FT-IR)进行了表征,且对配合物1的荧光性质进行了详细的分析。  相似文献   

19.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

20.
DFT(B3LYP) studies on first protonation step of a series of Cu(II) complexes of some tripodal tetraamines with general formula N[(CH2)nNH2][(CH2)mNH2][(CH2)pNH2] (n = m = p = 2, tren; n = 3, m = p = 2, pee; n = m = 3, p = 2, ppe; n = m = 3, tpt; n = 2, m = 3, p = 4, epb; and n = m = 3, p = 4; ppb) are reported. First, the gas‐phase proton macroaffinity of all latter complexes was calculated with considering following simple reaction: [Cu(L)]2+(g) + H+(g) → [Cu(HL)]3+(g). The results showed that there is a good correlation between the calculated proton macroaffinities of all complexes with their stability constants in solution. Then, we tried to determine the possible reliable structures for microspecies involved in protonation process of above complexes. The results showed that, similar to the solid state, the [Cu(L)(H2O)]2+ and [Cu(HL)(H2O)2]3+ are most stable species for latter complexes and their protonated form, respectively, at gas phase. We found that there are acceptable correlations between the formation constants of above complexes with both the ? and ? of following reaction: [Cu(L)(H2O)]2+(g) + H+(g) + H2O(g) → [Cu(HL)(H2O)2]3+(g). The ? of the latter reaction can be defined as a theoretically solvent–proton macroaffinity of reactant complexes because they have gained one proton and one molecule of the solvent. The unknown formation constant of [Cu(epb)]2+ complex was also predicted from the observed correlations. In addition, the first proton affinity of all complexes was studied in solution using DPCM and CPCM methods. It was shown that there is an acceptable correlation between the solvent–proton affinities of [Cu(L)(H2O)]2+ complexes with formation constants of [Cu(HL)(H2O)2]3+ complexes in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号