首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four-band quantum well infrared photodetector array   总被引:4,自引:0,他引:4  
A four-band quantum well infrared photodetector (QWIP) focal plane array (FPA) has been demonstrated by stacking different multi-quantum well structures, which are sensitive in 4–5.5, 8.5–10, 10–12, and 13–15.5 μm infrared bands. This 640 × 514 format FPA consists of four 640 × 128 pixel areas which are capable of acquiring images in these infrared bands. In this application, instead of quarter wevelength groove depth grating reflectors, three-quarter wavelength groove depth reflectors were used to couple radiation to each QWIP layer. This technique allows us to optimize the light coupling to each QWIP stack at corresponding pixels while keeping the pixel (or mesa) height at the same level, which will be essential for indium bump-bonding with the multiplexer. In addition to light coupling, these gratings serve as a contact to the active stack while shorting the unwanted stacks. Flexible QWIP design parameters, such as well width, barrier thickness, doping density, and the number of periods, were cleverly exploited to optimize the performance of each detector while accommodating requirements set by the deep groove light coupling gratings. For imaging, detector array is operated at temperature T=45 K, and each detector shows a very high D*>1×1011 cm  /W for 300 K background with f/2 optics. This initial array gave excellent images with 99.9% of the pixels working, demonstrating the high yield of GaAs technology.  相似文献   

2.
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.  相似文献   

3.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a 1,024 × 1,024 (1K × 1K), 8–12  μm infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using an L3/Cincinnati Electronics silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). We have integrated the 1K × 1K array into an SE-IR based imaging camera system and performed tests over the 50–80 K temperature range achieving BLIP performance at an operating temperature of 57 K. The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. One of the advantages of GaAs QWIP technology is the ability to fabricate arrays in a fashion similar to and compatible with silicon IC technology. The designer’s ability to easily select the spectral response of the material from 3 μm to beyond 15 μm is the result of the success of band-gap engineering and the Army Research Lab is a leader in this area. In this paper we will present the first results of our 1K × 1K QWIP array development including fabrication methodology, test data and imaging capabilities.  相似文献   

4.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4–15.4 μm wavelength region. This effort was a collaboration between NASA’s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5–5.7 μm, Band 2; 8.5–10 μm, Band 3; 10–12 μm and Band 4; 13.3–14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four “broad” bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.  相似文献   

5.
Uncooled microbolometer detector: Recent developments at Ulis   总被引:1,自引:0,他引:1  
Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 × 120 and 384 × 288 arrays production. Besides a wide-band version from uncooled 320 × 240/45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 × 240 infrared focal plane arrays with a pixel pitch of 45 μm. Information on the new 640 × 480 array with a pixel pitch of 25 μm is also presented.  相似文献   

6.
We study the optical coupling in quantum well photodetectors, focusing on finite size effects. We introduced a finite-element model of the detector and we show experimentally that the optical coupling efficiency is strongly dependent on the pixel size and that in very small detectors diffraction dominates the grating coupling. A 640 × 512 QWIP focal plane array was characterized to show that the optical response of thinned samples may depend on the substrate thickness noticeably. These results are in much closer agreement with predictions obtained with our model than using standard techniques.  相似文献   

7.
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45° and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 μm. Peak detectivity of the 8.1 μm devices has reached 1 × 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 × 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature.  相似文献   

8.
Previously, we demonstrated a large format 1024 × 1024 corrugated quantum well infrared photodetector focal plane array (C-QWIP FPA). The FPA has a cutoff at 8.6 μm and is BLIP at 76 K with f/1.8 optics. The pixel had a shallow trapezoidal geometry that simplified processing but limited the quantum efficiency QE. In this paper, we will present two approaches to achieve a larger QE for the C-QWIPs. The first approach increases the size of the corrugations for more active volume and adopts a nearly triangular pixel geometry for larger light reflecting surfaces. With these improvements, QE is predicted to be about 35% for a pair of inclined sidewalls, which is more than twice the previous value. The second approach is to use Fabry–Perot resonant oscillations inside the corrugated cavities to enhance the vertical electric field strength. With this approach, a larger QE of 50% can be achieved within certain spectral regions without using either very thick active layers or anti-reflection coatings. The former approach has been adopted to produce two FPAs, and the preliminary experimental results will be discussed. In this paper, we also describe using voltage tunable detector materials to achieve multi-color capability for these FPAs.  相似文献   

9.
A multi-band focal plane array sensitive in near-infrared (near-IR) and mid-wavelength infrared (MWIR) is been developed by monolithically integrating a near-infrared (1–1.5 μm) p–i–n photodiode with a mid-infrared (3–5 μm) QWIP. This multiband detector involves both intersubband and interband transitions in III–V semiconductor layer structures. Each detector stack absorbs photons within the specified wavelength band, while allowing the transmission of photons in other spectral bands, thus efficiently permitting multiband detection. Monolithically grown material characterization data and individual detector test results ensure the high quality of material suitable for near-infrared/QWIP dual-band focal plane array.  相似文献   

10.
THALES long wave QWIP thermal imagers   总被引:1,自引:0,他引:1  
THALES have developed for volume manufacture high performance low cost thermal imaging cameras based on the THALES Research Technology (TRT) third generation gallium arsenide long wave QWIP array. Catherine XP provides 768 × 575 CCIR video resolution and Catherine MP provides 1280 × 1024 SXGA video resolution. These compact and rugged cameras provide 24 h passive observation, detection, recognition, identification (DRI) in the 8–12 μm range, providing resistance to battlefield obscurants and solar dazzle, and are fully self contained with standard power and communication interfaces. The cameras have expansion capabilities to extend functionality (for example, automatic target detection) and have network battlefield capability. Both cameras benefit from the high quantum efficiency and freedom from low frequency noise of the TRT QWIP, allowing operation at 75 K, low integration times and non interruptive non uniformity correction. The cameras have successfully reached technology readiness level 6/7 and have commenced environmental qualification testing in order to complete the development programmes. These latest additions to the THALES Catherine family provide high performance thermal imaging at an affordable cost.  相似文献   

11.
We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption 2–5 μm and 8–12 μm bands. Recent LWIR devices have produced detectivities as high as 8 × 1010 Jones with a differential resistance–area product greater than 6 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 12 μm. The measured internal quantum efficiency of these front-side illuminated devices is close to 30% in the 10–11 μm range. MWIR devices have produced detectivities as high as 8 × 1013 Jones with a differential resistance–area product greater than 3 × 107 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 3.7 μm. The measured internal quantum efficiency of these front-side illuminated MWIR devices is close to 40% in the 2–3 μm range at low temperature and increases to over 60% near room temperature.  相似文献   

12.
InAs/GaAs quantum dot infrared photodetectors were fabricated with quantum dots grown at three different temperatures. Large detection wavelength shift (5–14.5 μm) was demonstrated by changing 40 degrees of the epitaxy temperature. The smaller quantum dots grown at lower temperature generate 14.5 μm responses. The detectivity of the normal incident 15 μm QDIP at 77 K is 3 × 108 cm Hz1/2/W. A three-color detector was also demonstrated with quantum dots grown at medium temperature. The three-color detection comes from two groups of different sizes of dots within one QD layer. This new type of multicolor detector shows unique temperature tuning behavior that was never reported before.  相似文献   

13.
The low-frequency noise is a ubiquitous phenomenon and the spectral power density of this fluctuation process is inversely proportional to the frequency of the signal. We have measured the 1/f noise of a 640 × 512 pixel quantum well infrared photodetector (QWIP) focal plane array (FPA) with 6.2 μm peak wavelength. Our experimental observations show that this QWIP FPA’s 1/f noise corner frequency is about 0.1 mHz. With this kind of low frequency stability, QWIPs could unveil a new class of infrared applications that have never been imagined before. Furthermore, we present the results from a similar 1/f noise measurement of bulk InAsSb absorber (lattice matched to GaSb substrate) nBn detector array with 4.0 μm cutoff wavelength.  相似文献   

14.
The present work deals with the calibration of a focal plane array infrared camera whose detector is a matrix of 320×244 PtSi sensors active in the range 3.6–5 μm. The calibration curve has been obtained by measuring the energy emitted by a blackbody, consisting in a copper cylindric cavity with isothermal walls. The results, obtained in the temperature range 10–70 °C, enable us to investigate the nature of the noise which affects the measurements. The aim is to suggest a data processing and a calibration technique in order to enhance the image quality and the instrument response as well. The effects of random uncertainties have been reduced by using Wiener filtration, which enables us to improve the signal to noise ratio. The problem caused by the nonuniform response of the detector array has been handled by using a different calibration curve for each sensor. The effectiveness of this procedure has been checked by comparing the frequency histograms of the raw and the processed signal. The investigation enables us to highlight some peculiar features of the new focal plane array technology employed in the new generation infrared cameras.  相似文献   

15.
16.
Terahertz detection capability of an n-type heterojunction interfacial work function internal photoemission (HEIWIP) detector is demonstrated. Threshold frequency, f0, of 3.2 THz (93 μm) was obtained by using n-type GaAs emitter doped to 1 × 1018 cm−3 and Al0.04Ga0.96As single barrier structure. The detector shows a broad spectral response from 30 to 3.2 THz (10–93 μm) with peak responsivity of 6.5 A/W at 7.1 THz under a forward bias field of 0.7 kV/cm at 6 K. The peak quantum efficiency and peak detectivity are 19% and 5.5 × 108 Jones, respectively under a bias field of 0.7 kV/cm at 6 K. In addition, the detector can be operated up to 25 K.  相似文献   

17.
Reversible and irreversible domain wall (DW) motions have been investigated in La0.7Sr0.3MnO3 ceramic samples using frequency-response complex permeability with various amplitudes of AC field. We also examine the effects of temperature in the range from 293 to 368 K and transverse DC magnetic field with a maximum of 4.40×105 A/m on the real part of permeability (μ′). Two relaxations corresponding to reversible wall motions and domain rotations occur in low and high frequency regions, respectively. The irreversible DW displacements can be activated as the amplitude larger than the pinning field of 3 A/m, leading to an increase in μ′. The μ′ obeys a Rayleigh law at the temperature below 343 K or under DC field of less than 4.22×104 A/m. The Rayleigh constant η increases from 5.45×10−2 to 1.54×10−1 (A/m)−1 as the temperature rises from 293 to 343 K, and η decreases from 5.58×10−2 to 3.67×10−2 (A/m)−1 with increasing DC field from 1.99×103 to 4.22×104 A/m.  相似文献   

18.
A novel two color infrared (IR) device that allows fast electrical switching between the short wavelength IR (SWIR) band (0.9–1.6 μm) and the long wavelength IR (LWIR) band (8–12 μm) is presented. The integrated sensor is based on MOCVD grown, lattice matched (to InP substrate) epilayers of InGaAs/InP and consists of two, monolithically integrated sections of heterojunction bipolar transistor (HBT) and quantum well infrared photodetector (QWIP).  相似文献   

19.
We have demonstrated a two-contact quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse in both the mid- and the long-wavelength atmospheric windows of 3–5 μm and of 8–12 μm. The structure of the device was achieved by sequentially growing a mid-wavelength QWIP part followed by a long-wavelength QWIP part separated by an n-doped layer. Compared with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate two-color focal plane array (FPA) fabrication by reducing the number of the indium bumps per pixel from three to one just like a monochromatic FPA fabrication and to increase the FPA fill factor by reducing one contact per pixel; another advantage may be that this QWIP FPA boasts broadband detection capability in the two atmospheric windows while using only a monochromatic readout integrated circuit. We attributed this simultaneous broadband detection to the different distributions of the total bias voltage between the mid- and long-wavelength QWIP parts.  相似文献   

20.
This paper presents the design, fabrication and characterization of a QWIP photodetector capable of detecting simultaneously infrared radiation within near infrared (NIR), mid wavelength infrared (MWIR) and long wavelength infrared (LWIR). The NIR detection was achieved using interband transition while MWIR and LWIR were based on intersubband transition in the conduction band. The quantum well structure was designed using a computational tool developed to solve self-consistently the Schrödinger–Poisson equation with the help of the shooting method. Intersubband absorption in the sample was measured for the MWIR and LWIR using Fourier transform spectroscopy (FTIR) and the measured peak positions were found at 5.3 μm and 8.7 μm which agree well with the theoretical values obtained 5.0 μm and 9.0 μm for the two infrared bands which indicates the accuracy of the self-consistent model. The photodetectors were fabricated using a standard photolithography process with exposed middle contacts to allow separate bias and readout of signals from the three wavelength bands. The measured photoresponse gave three peaks at 0.84 μm, 5.0 μm and 8.5 μm wavelengths with approximately 0.5 A/W, 0.03 A/W and 0.13 A/W peak responsivities for NIR, MWIR and LWIR bands, respectively. This work demonstrates the possibility of detection of widely separated wavelength bands using interband and intersubband transitions in quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号