首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,the displacement solution method of the conical shell is presented.Fromthe differential equations in displacement form of conical shell and by introducing adisplacement function,U(s,θ),the differential equations are changed into an eight-ordersoluble partial differential equation about the displacement function U(s,θ)in which thecoefficients are variable.At the same time,the expressions of the displacement and internalforce components of the shell are also given by the displacement function.As special casesof this paper,the displacement function introduced by V.Z.Vlasov in circular cylindricalshell,the basic equation of the cylindrical shell and that of the circular plate are directlyderived.Under the arbitrary loads and boundary conditions,the general bending problem of theconical shell is reduced to finding the displacement function U(s,θ),and the generalsolution of the governing equation is obtained in generalized hypergeometric function,Forthe axisymmetric bending deformation of the  相似文献   

2.
By using Donnell's simplication and starting from the displacement type equations of conical shells, and introducing a displacement functionU(s,,) (In the limit case, it will be reduced to cylindrical shell displacement function introduced by V. S. Vlasov) and a generalized loadq,(s,,),the equations of conical shells are changed into an eighth—order solvable partial differential equation about the displacement functionU(s,,). As a special case, the general bending problem of conical shells on Winkler foundation has been studied. Detailed numerical results and boundary coefficients for edge unit loads are obtained.The project supported by the National Natural Science Foundation of China.  相似文献   

3.
本文提出了轴对称圆锥壳精确的四阶挠度微分方程。和现行薄壳理论中常用的四阶剪力Q_1微分方程相比,挠度微分方程与其精度相同,阶数相同,而且满足边界条件简单,使圆锥壳的计算得到很大的简化。  相似文献   

4.
The isothermal response of a viscoelastic cylindrical shell, of finite length, to arbitary axisymmetric surface forces, initial conditions, and boundary conditions is considered within the linear theory of thin shells. The problem is formulated with the effects of shear deformation and rotatory inertia included; the viscoelastic properties are assumed to be isotropic and homogeneous. The response is first found formally in terms of a causal Green's function. It is then shown that when Poisson's ratio is constant, the causal Green's function can be expanded in a series of orthonormal spatial eigenfunctions of an associated elastic shell eigenvalue problem. The resulting solution for the general problem is an eigenfunction series with Laplace transformed time-dependent coefficients. The general solution is applied to predicting the motion of a uniform, simply-supported cylindrical shell, initially quiescent, which is subjected to a step pressure moving with constant velocity. For this example, the relaxation function of the shell material in uniaxial extension is taken to be that of a standard linear solid. The motions predicted by simpler shell models, namely, shells with bending only and without bending, are also considered for comparison. Here, the absolute values of the Fourier coefficients in the shell displacement series go to zero faster than the inverse of the first or second power of positive integers when bending is excluded or included, respectively. Numerical results are presented for a moderately long and relatively thick, nearly elastic, cylindrical shell.  相似文献   

5.
锥壳固有振动的精确解   总被引:3,自引:1,他引:3  
本文从锥壳的Mushtari-Donnell型位移微分方程组出发,通过引入一个位移函数U(s,θ,τ)(在极限情况下,它将退化成对于圆柱壳引入的位移函数),将基本微分方程组化成为一个可解偏微分方程。这个方程的解用级数形式给出。  相似文献   

6.
The quasi-Green’s function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green’s function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of the problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green’s formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.  相似文献   

7.
杨骁  任凯凯  盛棋楸 《力学季刊》2020,41(4):684-694
将圆形基坑支护结构视为弹性圆柱壳,利用广义Delta函数和Heaviside函数,基于圆柱薄壳轴对称弯曲变形的控制方程,利用Laplace变换及其逆变换,得到了具有任意数目刚性环梁支撑的圆形深基坑支护结构变形的解析解.在此基础上,以某一圆形基坑工程为背景,分析了基坑底部混凝土底板、支护结构底部边界条件、基坑开挖深度以及支护结构的几何和物理参数等对支护结构变形和内力分布的影响,结果表明:随着基坑半径和挖掘深度的增大,支护结构的位移和内力增大,但随着支护结构厚度的增加,径向位移减小,而内力增加.同时,随着支护结构弹性模量的增加,基坑位移减小,但内力几乎没有变化,这些结果为圆形基坑支护结构设计提供了理论依据和指导.  相似文献   

8.
The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.  相似文献   

9.
The idea of quasi-Green's function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi- Green's function is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the prob- lem. The mode shape differential equations of the free vibration problem of a simply- supported trapezoidal shallow spherical shell are reduced to two simultaneous Fredholm integral equations of the second kind by the Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equa- tion, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution to the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the quasi-Green's function method.  相似文献   

10.
This investigation is concerned with a mathematical analysis of an elastic circular cylindrical pile embedded in a transversely isotropic half-space under lateral dynamic excitations. A combination of time-harmonic horizontal shear force and moment are applied at the top end of the pile. The boundary value problem is formulated by decomposing the pile-medium system into a fictitious pile and an extended transversely isotropic half-space. A Fredholm integral equation of the second kind governs the interaction problem, whose solution is then computed numerically. Selected results for dynamic compliance bending moment, displacement and slope profiles are presented for different transversely isotropic half-spaces to portray the influence of degree of anisotropy of the medium on various aspects of the solution.  相似文献   

11.
One of the possible ways of stating and solving the selection problem for optimum temperature fields for localized axisymmetric heating of shells is investigated. The minimum of shell elastic energy is taken as the optimization criterion. An infinite cylindrical shell was considered in a similar formulation in [1], The corresponding variational problem is formulated for the functional of elastic energy with additional limitations imposed on the function of twist angle at specified shell sections. The variational problem is reduced to an isoperimetric by the use of singular functionals of the -function kind. The related Euler equation is obtained, and this together with the problem resolvent equation constitute a complete set of equations for determining the extremum temperature field with related stress-strain state of the shell. Cylindrical, conical, and spherical shells are considered separately. A numerical analysis is made for the simplest conditions of localized heating of cylindrical and conical shells.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4, pp. 47–54, July–August, 1968.  相似文献   

12.
以简支梯形底扁球壳的弯曲问题为例,详细阐明了准格林函数方法的思想.即利用问题的基本解和边界方程构造一个准格林函数,这个函数满足了问题的齐次边界条件,采用格林公式将简支扁球壳弯曲问题的控制微分方程化为两个互相耦合的第二类Fredholm积分方程.边界方程有多种选择,在选定一种边界方程的基础上,可以通过建立一个新的边界方程...  相似文献   

13.
Thin-walled weakly conical and cylindrical shells with arbitrary open, simply or multiply closed contour of transverse cross-sections strengthened by longitudinal elements (such as stringers and longerons) are used in the design of wings, fuselages, and ship hulls. To avoid significant deformations of the contour, such structures are stiffened by transverse elements (such as ribs and frames). Various computational models and methods are used to analyze the stress-strain states of such compound structures. In particular, the ground stress-strain states in bending, transverse shear, and twisting of elongated structures are often analyzed with the use of the theory of thin-walled beams [1] based on the hypothesis of free (unconstrained) warping and bending of the contour of transverse cross-sections. In general, the computations with the contour warping and bending constraints caused by the variable load distribution, transverse stiffening elements, and the difference in the geometric and rigidity parameters of the shell cells are usually performed by the finite element method or the superelement (substructure) method [2, 3]. In several special cases (mainly for separate cells of cylindrical and weakly conical shells located between transverse stiffening elements, with the use of some additional simplifying assumptions), efficient variation methods for computations in displacements [4–8] and in stresses [9] were developed, so that they reduce the problem to a system of ordinary differential equations. In the one-and two-term approximations, these methods permit obtaining analytic solutions, which are convenient in practical computations. But for shells with multiply closed contours of transverse cross-sections and in the case of exact computations by using the Vlasov variational method [4], difficulties are encountered in choosing the functions representing the warping and bending of the contour of transverse cross-sections. In [10], in computations of a cylindrical shell with simply closed undeformed contour of the transverse section, warping was represented in the form of expansions in the eigenfunctions orthogonal on the contour, which were determined by the method of separation of variables from a special integro-differential equation. In [11], a second-order ordinary differential equation of Sturm-Liouville type was obtained; its solutions form a complete system of orthogonal functions with orthogonal derivatives on an arbitrary open simply or multiply closed contour of a membrane cylindrical shell stiffened by longitudinal elements. The analysis of such a shell with expansion of the displacements in these functions leads to ordinary differential equations that are not coupled with each other. In the present paper, by using the method of separation of variables, we obtain differential and the corresponding variational equations for numerically determining complete systems of eigenfunctions on an arbitrary contour of a discretely stiffened membrane weakly conical shell and a weakly conical shell with undeformed contour. The obtained systems of eigenfunctions are used to reduce the problem of deformation of shells of these two types to uncoupled differential equations, which can be solved exactly.  相似文献   

14.
ON THE GENERAL SOLUTION OF CYLINDRICAL SHELL EQUATIONSPeterYiXue(薛毅);XueDawei(薛大为)(ReceivedOct.16,1995)Abstract:Itisprovedmat...  相似文献   

15.
基于能量法和变分原理,采用双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板在分布载荷作用下的弯曲问题。首先,根据能量法与变分原理,给出了梯度弹性基础上正交异性薄板的弯曲微分平衡方程,并得到了梯度弹性基础刚度系数 与 的计算表达式;进而,假设 向正应力在厚度方向上均匀分布,推导了弹性基础 向位移衰减函数 的计算式。在算例中,通过将梯度弹性基础退化为均质基础,并与Vlazov模型对比,证明了本文理论的正确性;最后,求解了弹性模量呈幂律分布的梯度基础上薄板的挠度分布,分析了基础上下表层材料弹性模量比 与体积分数指数 对薄板挠度分布的影响。  相似文献   

16.
乔继彤  张若京 《力学季刊》2000,21(4):487-491
本文采用奇异积分方程法分析了横观各向同性体中的埋藏裂纹。建立了张开型埋藏裂纹的Cauchy型奇异积分方程。当裂纹面和弹性对称轴垂直时,得到的裂纹张开位移方程的求解与各向同性情况类似。当裂纹面和弹性对称轴平行时,根据加权余量法,建立了弱解方程。给出两个算例,计算了圆形裂纹和椭圆形裂纹上的张开位移分布。数值结果表明:本文的方法是有效的。横观各向同性体中,埋藏裂纹方位任意时的裂纹张开位移方程,根据本文的方法易于得到。  相似文献   

17.
本文根据工程实例计算的需要,研究了有限长弹性圆柱薄壳在两种非轴对称同步移动载荷作用下的动力响应问题。两种非轴对称同步移动载荷作用是指非轴对称移动的集中载荷,以及同步移动且作用范围随移动位置增加的均布载荷的共同作用。建立了在上述两种不同类型载荷作用下的具有对称形式的动力学微分方程组;分别采用Dirac函数与Heaviside函数表示移动的均布载荷与集中载荷,设定位移函数的基础上,应用Galerkin法及Laplace变换,求得了圆柱薄壳应力与位移动态响应的解析解;通过具体算例,将所得到解析解的计算结果与ANSYS数值解进行了对比分析,验证了解析解的可靠性。  相似文献   

18.
IntroductionIt’swell_knownthatthecomplicatedfundamentalsolution[1,2 ]forHelmholtzequationΔu(x) +k2 u(x) =0  (x∈Ω:boundedopenregioninR2 )isu (x,y) =-iH(2 )0 (k x-y ) 4,thusit’snotconvenientfornumericalcomputation .IfapplyingthesimplefundamentalsolutionofLaplaceequationu 0 (x ,y) =-ln|x-y|(2π) ,theexpressionforthesolutionofequationintheclosedregion Ωisc(y)u(y) + ∫Γu(x) u 0 (x,y) nx -u 0 (x ,y) u(x) n dsx =-k2∫Ωu(x)u 0 (x,y)dΩx.Astherightsideappearstheregionalintegrationinclu…  相似文献   

19.
郭树起 《力学学报》2020,52(1):73-81
边界元方法作为一种数值方法, 在各种科学工程问题中得到了广泛的应用.本文参考了边界元法的求解思路, 从Somigliana等式出发, 利用格林函数性质,得到了一种边界积分法, 使之可以用来寻求弹性问题的解析解.此边界积分法也可以从Betti互易定理得到. 应用此新方法, 求解了圆形夹杂问题.首先设定夹杂与基体之间完美连接, 将界面处的位移与应力按照傅里叶级数展开,根据问题的对称性与三角函数的正交性来简化假设, 减少待定系数的个数.其次选择合适的试函数(试函数满足位移单值条件以及无体力的线弹性力学问题的控制方程),应用边界积分法, 求得界面处的位移与应力的值. 然后再求解域内位移与应力.得到了问题的精确解析解, 当夹杂弹性模量为零或趋向于无穷大时,退化为圆孔或刚性夹杂问题的解析解. 求解过程表明,若问题的求解区域包含无穷远处时, 所取的试函数应满足无穷远处的边界条件.若求解区域包含坐标原点, 试函数在原点处位移与应力应是有限的.结果表明了此方法的有效性.   相似文献   

20.
I.IntroductionSincecompositematerialshavesuperiormechanicalproperties,theyarewidelyconcernedbytechnicians.Fromtheclassicallaminatetheorytothefirst-ordersheardeformationtheoryandfromthehigher-ordertheorytotheelasticitytheory,thetheoriesoflaminatedplatesofcompositemeterialsgetfastdevelopment.TheNaviersolutionofsimplysupportedrectangularplateswasdevelopedbyWhitneyandLeissalllforclassicallaminatetheory.TheNaviersolutionwasdevelopedbyWhitneyandPaganol'1forthefirst-ordersheardeformationtheory.Th…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号