首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

2.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

3.
The study of the diffusion of a magnetic field into a moving conductor is of interest in connection with the production of ultra-high-strength magnetic fields by rapid compression of conducting shells [1,2]. In [3,4] it is shown that when a magnetic field in a plane slit is compressed at constant velocity, the entire flux enters the conductor. In the present paper we formulate a general result concerning the conservation of the sum current in the cavity and conductor for arbitrary motion of the latter. We also consider a special case of conductor motion when the flux in the cavity remains constant despite the finite conductivity of the material bounding the magnetic field.Notation 1, * flux which has diffused into the conductor - 2 flux in the cavity - 0 sum flux - r radius - r* cavity boundary - thickness of the skin layer - (r) delta function of r - t time - q intensity of the fluid sink - v velocity - flux which has diffused to a depth larger than r - x self-similar variable - dimensionless fraction of the flux which has diffused to a depth larger than r - * fraction of the flux which has diffused into the conductor - a conductivity - c electrodynamic constant - Rm magnetic Reynolds number - dimensionless parameter  相似文献   

4.
The theory of a vibrating-rod viscometer   总被引:3,自引:0,他引:3  
The paper presents a complete theory for a viscometer based upon the principle of a circular-section rod, immersed in a fluid, performing transverse oscillations perpendicular to its axis. The theory is established as a result of a detailed analysis of the fluid flow around the rod and is subject to a number of criteria which subsequently constrain the design of an instrument. Using water as an example it is shown that a practical instrument can be designed so as to enable viscosity measurement with an accuracy of ±0.1%, although it is noted that many earlier instruments failed to satisfy one or more of the newly-established constraints.Nomenclature A, D constants in equation (46) - A m , B m , C m , D m constants in equations (50) and (51) - A j , B j constants in equation (14) - a j + , a j wavenumbers given by equation (15) - C f drag coefficient defined in equation (53) - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - f(z) initial deformation of rod - f(), F m () functions of defined in equation (41) - F force in the rod - force per unit length near t=0 - F dimensionless force per unit length near t=0 - g m amplitude of transient force - G modulus of rigidity - h, h* functions defined by equations (71) and (72) - H functions defined by equation (69) and (70) - I second moment of area - I 0,1, J 0,1, K 0,1 modified Bessel functions - k, k functions defined in equations (2) - L half-length of oscillator - Ma Mach number - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equations (15) and (16) - R radius of rod - R c radius of container - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - y 0 initial lateral displacement - y 1, y 2 successive maximum lateral displacement - z axial coordinate - dimensionless tension - dimensionless mass of fluid - dimensionless drag of fluid - amplification factor - logarithmic decrement in a fluid - a , b logarithmic decrement in fluids a and b - 0 logarithmic decrement in vacuo - j logarithmic decrement in mode j in a fluid - spatial resolution of amplitude - v voltage resolution - r, , , s, , increments in R, , , s , , - dimensionless amplitude of oscillation - dimensionless axial coordinate - angular coordinate - f thermal conductivity of fluid - viscosity of fluid - viscosity of fluid calculated on assumption that * - a , b viscosity of fluids a and b - m constants in equation (10) - dimensionless displacement - j j the component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - spatial component of defined in equation (11) - j , tm jth, mth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - streamfunction - dimensionless frequency (based on ) - angular frequency - 0 angular frequency in absence of fluid and internal damping - j angular frequency in mode j in a fluid - a , b frequencies in fluids a and b  相似文献   

5.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

6.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

7.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

8.
An exact solution is given for the steady flow of a Newtonian fluid occupying the halfspace past the plane z=0 uniformly rotating about a fixed normal axis (Oz). This solution is obtained in a velocity field of the form considered by Berker [2] and can be deduced as a limiting case, as h+, of the solution to the problem relative to the strip 0zh imposing at z=h either the adherence boundary conditions or the free surface conditions. Furthermore, the stability of this flow, subject to periodic disturbances of finite amplitude, is studied using the energy method and the result is compared with those corresponding to stability of flows in the strip 0zh.
Sommario In questa nota si mostra che-oltre alla calssica soluzione di von Karman [1] — esiste, per opportuni valori del gradiente di pressione all'infinito, una soluzione esatta per il moto stazionario di un fluido Newtoniano posto nel semispazio limitato dal piano z=0 uniformemente rotante attorno ad un asse ad esso perpendicolare (Oz). Tale soluzione, ottenuta sulla scia del lavoro di Berker [2], si può dedurre anche come limite, per h+, della soluzione del problema relativo alla striscia 0zh quando sul piano z=h si assegnano o le condizioni di aderenza o le condizioni di frontiera libera. Si studia poi la stabilità di tale moto rispetto a perturbazioni spazialmente periodiche di ampiezza finita col metodo dell'energia e si confronta il risultato ottenuto con quelli relativi alla stabilità dei moti nella striscia 0zh.
  相似文献   

9.
Simulation of transient two-dimensional diffusion by means of a distributed electrical analog is discussed. After present techniques of analog model construction and calibration are reviewed, an improved calibration technique is presented and a convenient method of analog fabrication, not previously reported, is described. The proposed new method allows complete access to any point on the analog model during a test. Frequency response and step response measurements indicate that an adequate simulation is provided by this particular type of analog model.
Zusammenfassung Die Simulierung eines nichtstationären, zweidimensionalen Diffusionsvorganges mittels eines kontinuierlichen, elektro-thermischen Analogapparates wird besprochen. Eine Übersicht der gegenwärtigen Methoden für die Konstruktion und Kalibrierung von elektro-thermischen Analogmodellen wird gegeben. Ein verbessertes Verfahren für die Kalibrierung und eine handliche Fertigungsmethode von Analogmodellen, die noch nicht in der Literatur beschrieben wurden, werden dargestellt. Das vorgeschlagene neue Verfahren gestattet vollständigen Zugang zu jedem Punkt im Analogmodell während des Experiments. Meßbeobachtungen des periodischen Frequenzverhaltens und des nichtstationären Verhaltens zeigen, daß dieses spezielle Analogmodell eine ausreichende Simulierung des Diffusionsvorganges gestattet.

Nomenclature A 0 Potential amplitude atx=0 (see Fig. 5) - A x Potential amplitude at locationx (see Fig. 5) - A L Potential amplitude atx=L (see Fig. 5) - C Capacitance per unit area - j Frequency - L Characteristic length - R Resistance per square - t Time - x Coordinate - X Dimensionless distance,x/L - y Coordinate - Y Dimensionless distance,y/L - Diffusivity - x Phase angle at locationx (see Fig. 5) - L Phase angle atx=L (see Fig. 5) - d Thickness of dielectric sheet - r Thickness of resistance sheet - Dielectric constant - Resistivity - Dimensionless time,t/L 2 - Potential - 1 Reference potential - 2 Reference potential - Dimensionless potential, ( 1)/( 2 1) - Angular frequency, 2f - Dimensionless frequency,L 2/ The investigation was performed while the first author was Visiting Associate Professor at Purdue University during 1967/68.  相似文献   

10.
Summary The cooling of a hot fluid in laminar Newtonian flow through cooled elliptic tubes has been calculated theoretically. Numerical data have been computed for the two values 1.25 and 4 of the axial ratio of the elliptic cross-section . For =1.25 the influence of non-zero thermal resistance between outmost fluid layer and isothermal surroundings has also been investigated. Special attention has been given to the distribution of heat flux around the perimeter; when increases the flux varies more with the position at the circumference. This positional dependence becomes less pronounced, however, as the (position-independent) thermal resistance of the wall increases.Flattening of the conduit, while maintaining its cross-sectional area constant, improves the cooling. Comparison with rectangular pipes shows that this improvement is not as marked with elliptic as with rectangular pipes.Nomenclature A k =A m, n coefficients of expansion (6) - a, b half-axes of ellipse, b<a - a p =a r, s coefficients of representation (V) - D hydraulic diameter, = 4S/P; S = cross-sectional area, P = perimeter - D e equivalent diameter, according to (13) - n coordinate (outward) normal to the tube wall - T temperature of fluid - T i temperature of fluid at the inlet - T s temperature of surroundings - v 0 mean velocity of fluid - v z longitudinal velocity of fluid - x, y carthesian coordinates coinciding with axes of ellipse - z coordinate in flow direction - , dimensionless half-axes of ellipse, =a/D and =b/D - t heat transfer coefficient from fluid at bulk temperature to surroundings; equation (11) - w heat transfer coefficient at the wall; equation (3) - axial ratio of ellipse, = a/b = / - , , , dimensionless coordinates; =x/D, =y/D, =z/D, =n/D - dimensionless temperature, = (T–T s)/(T iT s) - 0 cup-mixing mean value of ; equation (10) - thermal conductivity of fluid - m,n = k eigenvalue - c volumetric heat capacity of fluid - m, n = k = k eigenfunction; equations (6) and (I) - Nu total Nusselt number, = t D/ - Nusselt number at large distance from the inlet - Nu w wall Nusselt number, = w D/, based on w - Pé Péclet number, = 0 Dc/  相似文献   

11.
The unsteady natural convection boundary layer flow over a semi-infinite inclined plate is considered with the wall temperatureT w ,(x) (=T +ax n )varying as the power of the axial coordinate. The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson type. Numerical results are obtained for different values of Prandtl number, Grashof number and n for different angles of inclination. The steadystate velocity and temperature profiles, local and average skin frictions and Nusselt numbers are shown graphically. The effects of the angle of inclination and exponent n on velocity and temperature profiles, skin friction and Nusselt number have been discussed. The velocity, temperature and Nusselt number of the present study are compared with the available results and a good agreement is found to exist between the two.
Differenzlösung für nichtstationäre natürliche Grenzschicht-Konvektionsströmung an einer geneigten Platte mit veränderlicher Oberflächentemperatur
Zusammenfassung Die nichtstationäre natürliche Grenzschicht-Konvektionsströmung an einer halbunendlichen geneigten Platte wird unter Zugrundelegung der GesetzmäßigkeitT w ,(x) (=T +ax n für die Wandtemperatur als Funktion der Achsialkoordinate untersucht, und zwar mit Hilfe eines impliziten Differenzverfahrens vom Crank-Nicolson Typ und bei Variation der Prandtl- und Grashof-Zahlen, des Exponenten n und des Neigungswinkels. Graphisch dargestellt sind die Geschwindigkeits-und Temperaturprofile im stationären Zustand, die örtlichen und gemittelten Reibungsbeiwerte und der Nusselt-Zahlen. Der Einfluß des Neigungswinkels und des Exponenten n auf diese Größe wird diskutiert. Im Vergleich mit den Ergebnissen aus anderen Arbeiten konnte gute Übereinstimmung festgestellt werden.

Nomenclature g acceleration due to gravity - Gr L Grashof number at x=L - L length of the plate - n exponent in the power law variation of the wall temperature - Nu x local Nusselt number - Nu X dimensionless local Nusselt number - average Nusselt number - dimensionless average Nusselt number - p pressure - Pr Prandtl number - t time - t dimensionless time - T temperature - Tw temperature on the plate - T dimensionless temperature - u x-velocity component - U dimensionlessX-velocity component - v y-velocity component - V dimensionlessY-velocity component - x spatial coordinate along the plate - X dimensionless spatial coordinate along the plate - y spatial coordinate normal to the plate - Y dimensionless spatial coordinate normal to the plate Greek symbols thermal diffusivity - ß volumetric coefficient of thermal expansion - t dimensionless time-step - X dimensionless finite difference grid spacing in theX-direction - Y dimensionless finite difference grid spacing in theY-direction - angle of inclination of plate with horizontal - kinematic viscosity - density - x local skin friction - X dimensionless local skin friction - average skin friction - dimensionless average skin friction  相似文献   

12.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

13.
An experimental study of swirling turbulent flow through a curved bend and its downstream tangent has been carried out. This study reports on the recovery from swirl and bend curvature and relies on measurements obtained in the downstream tangent and data reported in Part 1 to assess the recovery. Unlike the nonswirling flow case, the present measurements show that the cross-stream secondary flow is dominated by the decay of the solid-body rotation and the total wall shear stress measured at the inner and outer bend (furthest away from the bend center of curvature) is approximately equal. The shear distribution is fairly uniform, even at 1 D downstream of the bend exit. At 49D downstream of the bend exit, the mean axial velocity has recovered to its measured profile at 18D upstream of the bend entrance. Furthermore, the mean tangential velocity is close to zero everywhere and the turbulent shear and normal stresses take another 15D to approximately approach their stationary straight pipe values. Therefore, complete flow recovery from swirl and bend curvature takes a total length of about 85D from the bend entrance. This compares with a recovery length of about 78D for bend curvature alone. The recovery length is substantially shorter than that measured previously in swirling flow through straight pipes and is a consequence of the angular momentum decreasing by approximately 74% across the curved bend. Consequently, the effect of bend curvature is to accelerate swirl decay in a pipe flow.List of symbols C f total skin friction coefficient, = 2 w / w 0 2 - D pipe diameter, = 7.62 cm - De Dean number, = 1/2 Re = 13,874 - M angular momentum - N s swirl number, = D/2 W 0 = 1 - r radial coordinate - R mean bend radius of curvature, = 49.5 cm - Re pipe Reynolds number, = DW 0 /v= 50,000 - S axial coordinate along the upstream (measured negative) and downstream (measured positive) tangent - U, V, W mean velocities along the radial, tangential and axial directions, respectively - u, v, w mean fluctuating velocities along the radial, tangential and axial directions, respectively - u, v, w root mean square normal stress along the radial, tangential and axial directions, respectively - W 0 mean bulk velocity, 10 m/s - w total wall friction velocity, = w / - (w ) s total wall friction velocity measured as S/D = -18 - turbulent shear stresses - pipe-to-bend radius ratio, = D/2R = 0.077 - axial coordinate measured from bend entrance - fluid kinetic viscosity - fluid density - w total wall shear stress - azimuthal coordinate measured zero from pipe horizontal diameter near outer bend - angular speed of the rotating section  相似文献   

14.
Übersicht Bei stark abklingenden Funktionen wird die Übertragungsmatrix U() aufgespalten in die Anteilc U 1() e und U 2() e. Der zweite Term spielt am Rand = 0 keinc Rolle. Die unbekannten Anfangswerte sind über die Matrix U 1(0) an die bekannten gebunden und eindeutig bestimmbar.
Summary For strongly decaying solution functions the transfer matrix U() is splitted into the parts U 1() e and U 2() e. The second term does not influence at the boundary = 0. The unknown initial values are related by the matrix U 1(0) to the known values and they can be uniquely determined.
  相似文献   

15.
Transient propagation of weak pressure perturbations in a homogeneous, isotropic, fluid saturated aquifer has been studied. A damped wave equation for the pressure in the aquifer is derived using the macroscopic, volume averaged, mass conservation and momentum equations. The equation is applied to the case of a well in a closed aquifer and analytical solutions are obtained to two different flow cases. It is shown that the radius of influence propagates with a finite velocity. The results show that the effect of fluid inertia could be of importance where transient flow in porous media is studied.List of symbols b Thickness of the aquifer, m - c 0 Wave velocity, m/s - k Permeability of the porous medium, m2 - n Porosity of the porous medium - p( ,t) Pressure, N/m2 - Q Volume flux, m3/s - r Radial coordinate, m - r w Radius of the well, m - s Transform variable - S Storativity of the aquifer - S d(r, t) Drawdown, m - t Time, s - T Transmissivity of the aquifer, m2/s - ( ,t) Velocity of the fluid, m/s - Coordinate vector, m - z Vertical coordinate, m - Coefficient of compressibility, m2/N - Coefficient of fluid compressibility, m2/N - Relaxation time, s - (r, t) Hydraulic potential, m - Dynamic viscosity of the fluid, Ns/m2 - Dimensionless radius - Density of the fluid, Ns2/m4 - (, ) Dimensionless drawdown - Dimensionless time - , x Dummy variables - 0, 1 Auxilary functions  相似文献   

16.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

17.
An analysis is developed for the laminar free convection from a vertical plate with uniformly distributed wall heat flux and a concentrated line thermal source embedded at the leading edge. We introduce a parameter=(1 +Q L/Qw)–1=(1 + RaL/Raw)–1 to describe the relative strength of the two thermal sources; and propose a unified buoyancy parameter=( RaL+ Raw)1/5 with=1/(1 +Pr –1) to properly scale the dependent and independent variables. The variables are so defined that the resulting nonsimilar boundary-layer equations can describe exactly the buoyancy-induced flow from the dual sources with any relative strength to fluids of any Prandtl number from very small values to infinity. These nonsimilar equations are readily reducible to the self-similar equations of an adiabatic wall plume for=0, and to those of free convection from uniform flux plate for=1. Rigorous finite-difference solutions for fluids of Pr from 0.001 to are obtained over the entire range of from 0 to 1. The effects of both relative source strength and Prandtl number on the velocity profiles, temperature profiles, and the variations of wall temperature, are clearly illustrated.
Freie Konvektion an einer vertikalen Platte mit einer konzentrierten und einer gleichmäßig verteilten Wärmequelle
Zusammenfassung Für die freie Konvektion an einer vertikalen Platte mit einer gleichmäßig verteilten Wandwärmestromdichte und einer in der Vorderkante eingebetteten linienförmigen Wärmequelle wird eine Berechnungsmethode entwickelt. Zur Beschreibung der relativen Stärke der beiden Wärmequellen führen wir einen Parameter=(1 + QL/Qw)–1=(1 + RaL/Raw)–1 ein und schlagen einen vereinheitlichten Auftriebsparameter=( Ra L+ Ra w)1/5 mit=1/(1 +Pr –1 für die Skalierung der abhängigen und unabhängigen Variablen vor. Die Variablen werden so definiert, daß mit den sich ergebenden unabhängigen Grenzschichtgleichungen die von den beiden Wärmequellen beliebiger Stärke verursachte Auftriebsströmung von Fluiden beliebiger Prandtl-Zahl genau beschrieben werden kann. Diese unabhängigen Gleichungen können ohne weiteres auf die selbstähnlichen Gleichungen für den Fall einer lokalen Wärmezufuhr an einer sonst adiabatischen Wand für=0 und jenen der freien konvektion an einer Platte mit einheitlichem Wärmestrom für=1 zurückgeführt werden. Für Fluide mit der Prandtl-Zahl zwischen 0,001 und Unendlich werden nach der strengen finite Differenzen-Methode Lösungen im Bereich von zwischen 0 und 1 erhalten. Der jeweilige Einfluß der relativen Quellenstärke und der Prandtl-Zahl auf die Geschwindigkeits- und Temperaturprofile sowie die Veränderung der Wandtemperatur werden deutlich dargestellt.

Nomenclature C f friction coefficient - C p specific heat - f reduced stream function - g gravitational acceleration - k thermal conductivity - L width of the plate - Nu local Nusselt number - Pr Prandtl number - q w wall heat flux - Q L heat generated by the line source - Q w heat released by the uniform-flux wall from 0 tox, q w Lx - Ra L local Rayleigh number, g T L * x 3/( ) - Ra w local Rayleigh number,g T w * w 3/( ) - T fluid temperature - T temperature of ambient fluid - T L * characteristic temperature of the line source,Q L/(C p L) - T w * characteristic temperature of the uniform flux wall, =q w x/k=Q w /(C p L) - u velocity component in then-direction - U0 dimensionless velocity,u/(/x) Ra L 2/5 - U 1 dimensionless velocity,u/(/x) Ra w 2/5 - velocity component in they-direction - x coordinate parallel to the plate - y coordinate normal to the plate - thermal diffusivity - thermal expansion coefficient - pseudo-similarity variable,(y/x) - dimensionless temperature, (T–T )/(T L * +T w * ) - 0 dimensionless temperature, (Ral)1/5 (T–T )/T L * - 1 dimensionless temperature, (Raw)Raw)1/5 (T–T )/T w * - (Ra L+Raw)1/5 - kinematic viscosity - (1 +Ra L/Raw)–1=(1 +T L * /T w * )–1=(1 + QL/Qw)–1 - density - Pr/(1 +Pr) - w wall shear stress - stream function  相似文献   

18.
Summary This paper is devoted to a study of the flow of a second-order fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) over a finite rotating disc enclosed within a coaxial cylinderical casing. The effects of the second-order terms are observed to depend upon two dimensionless parameters 1 and 2. Maximum values 1 and 2 of the dimensionless radial distances at which there is no recirculation, for the cases of net radial outflow (m>0) and net radial inflow (m<0) respectively, decrease with an increase in the second-order effects [represented by T(=1+2)]. The velocities at 1 and 2 as well as at some other fixed radii have been calculated for different T and the associated phenomena of no-recirculation/recirculation discussed. The change in flow phenomena due to a reversal of the direction of net radial flow has also been studied. The moment on the rotating disc increases with T.Nomenclature , , z coordinates in a cylindrical polar system - z 0 distance between rotor and stator (gap length) - =/z 0, dimensionless radial distance - =z/z 0, dimensionless axial distance - s = s/z0, dimensionless disc radius - V =(u, v, w), velocity vector - dimensionless velocity components - uniform angular velocity of the rotor - , p fluid density and pressure - P =p/(2 z 02 2 , dimensionless pressure - 1, 2, 3 kinematic coefficients of Newtonian viscosity, elastico-viscosity and cross-viscosity respectively - 1, 2 2/z 0 2 , resp. 3/z 0 2 , dimensionless parameters representing the ratio of second-order and inertial effects - m = , mass rate of symmetrical radial outflow - l a number associated with induced circulatory flow - Rm =m/(z 01), Reynolds number of radial outflow - R l =l/(z 01), Reynolds number of induced circulatory flow - Rz =z 0 2 /1, Reynolds number based on the gap - 1, 2 maximum radii at which there is no recirculation for the cases Rm>0 and Rm<0 respectively - 1(T), 2(T) 1 and 2 for different T - U 1(T) (+) = dimensionless radial velocity, Rm>0 - V 1(T) (+) = , dimensionless transverse velocity, Rm>0 - U 2(T) (–) = , dimensionless radial velocity, Rm=–Rn<0, m=–n - V 2(T) (–) = , dimensionless transverse velocity, Rm<0 - C m moment coefficient  相似文献   

19.
Positively invariant regions for a problem in phase transitions   总被引:1,自引:0,他引:1  
Positively invariant regions for the system v t + p(W) x = V xx , W t V x = W xx are constructed where p < 0, w < , w > , p(w) = 0, w , > 0. Such a choice of p is motivated by the Maxwell construction for a van der Waals fluid. The method of an analysis is a modification of earlier ideas of Chueh, Conley, & Smoller [1]. The results given here provide independent L bounds on the solution (w, v).Dedicated to Professor James Serrin on the occasion of his sixtieth birthday  相似文献   

20.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号