首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
S G Ingle  R N Kakde 《Pramana》1993,41(3):219-232
Switching studies have been carried out in partially switched KNbO3 single crystals by observing switching transients and hysteresis loops. The crystals used contained ordered impurity dipoles that are active in nucleating domains around them. Partial initial switching was obtained by applying known compressive stress to the crystal by means of a spring. The partially switched nature was determined by recording the photograph of the crystal surface. The changed domain structure on the surface gave a clear idea of the extent of partial switching. As the compressive stress was gradually increased, the crystal showed increased initial mechanical switching through the mechanism of evaporation of domain walls associated with ordered impurity dipoles. The dipoles then switch systematically converting 90° domains with polar axes in the plane of plate into 60° domains with polar axes in the perpendicular pseudocubic {001} planes. The initial switching condition changes the switching characteristics as determined by hysteresis loops and switching transients. The results are interpreted in terms of domains in the crystal. If the dipole density is quite high, the effect of the dipoles becomes negligible, and the switching behaviour approximates that of a normal ferroelectric. The switching transients and the hysteresis loops in the crystals containing cooperatively ordered dipoles are basically different from the ones observed in normal ferroelectrics. The anomalous behaviour is detrimental to the use of material in device applications. Hence, it is shown that the switching transients and hysteresis loops provide a ready means of detecting the presence of these ordered impurity dipoles.  相似文献   

2.
The effect of misfit strain on properties of epitaxial BiFeO3 films that are grown along the pseudocubic [110] direction, rather than along the usual [001] direction, is predicted from density-functional theory. These films adopt the monoclinic Cc space group for compressive misfit strains smaller in magnitude than ?1.6% and for any investigated tensile strain. In this Cc phase, both polarization and the axis about which antiphase oxygen octahedra tilt rotate within the epitaxial plane as the strain varies. Surprisingly and unlike in (001) films, for compressive strain larger in magnitude than ?1.6%, the polarization vanishes and two orthorhombic phases of Pnma and P2(1)2(1)2(1) symmetry successively emerge via strain-induced transitions. The Pnma-to-P2(1)2(1)2(1) transition is a rare example of a so-called pure gyrotropic phase transition, and the P2(1)2(1)2(1) phase exhibits original interpenetrated arrays of ferroelectric vortices and antivortices.  相似文献   

3.
Monte Carlo simulations based on a first-principles-derived Hamiltonian are conducted to study the properties of Pb(Zr1-xTix)O3 alloys compositionally modulated along the [100] pseudocubic direction near the morphotropic phase boundary. It is shown that compositional modulation causes the polarization to continuously rotate away from the modulation direction, resulting in the unexpected triclinic and C-type monoclinic ground states and huge enhancement of electromechanical responses (the peak of piezoelectric coefficient is as high as 30,000 pC/N). The orientation dependence of dipole-dipole interaction in modulated structure is revealed as the microscopic mechanism to be responsible for these anomalies.  相似文献   

4.
We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point out that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation.  相似文献   

5.
In this work, the pressure induced phase transition of InAs is investigated by density functional theory. The first-order phase transition of InAs from zinc-blende (ZB) to the rocksalt (RS) structure occurs at 4.9 GPa accompanies by a 26% volume collapse. It is found that the nearest In and As atoms bonded as covalent bond, but there is no strong interaction between the nearest In–In or As–As atoms. Crystal space of ZB structure is occupied by tetrahedrons (4 In–As covalent bonds) partly with many interstice, and crystal space of RS is fulfilled by close-packed octahedrons (6 In–As covalent bonds). With increasing pressure, rebuild of covalent bond due to variations of electronic structure causes phase transition from ZB to RS structure. Furthermore, directional changes of covalent bond along [100] and [110] bring evident variation of shear on the {100} and {110} planes.  相似文献   

6.
Pb(Zr1-xTix)O3(PZT)是一种重要的钙钛矿结构铁电固溶体,在其准同型相界处发现单斜相引起研究的热潮,文章报道了作者最近对沿着[100]赝立方方向组分调制的PZT体系的铁电性质的研究结果,发现组分调制导致极化偏离调制方向,在准同型相界附近诱导出新型的铁电三斜相和C型单斜相,以及极高的机电特性,证明偶极相互作用是导致以上行为的主要微观机制。  相似文献   

7.
A new, stress-induced phase of KMnF3 is found in emission, absorption and a.c.-susceptibility measurements. The phase transition is of first order and it occurs under uniaxial stress parallel to the [100] and to the [110] pseudocubic axes at 20.1 and 27 kp/mm2 at 1.7 K. The experimental results are explained by a change in the amount of the tetragonal distortion in the new, stress-induced phase.  相似文献   

8.
Motivated by the long-standing unresolved enigma of the relaxor ferroelectric ground state, we performed a high-resolution heat capacity and polarization study of the field-induced phase transition in the relaxor ferroelectric single crystal Pb(Mg_{1/3}Nb_{2/3})O_{3} (PMN) oriented along the [110] direction. We show that the discontinuous evolution of polarization as a function of the electric field or temperature is a consequence of a true first order transition from a glassy to ferroelectric state, which is accompanied by an excess heat capacity anomaly and released latent heat. We also find that in a zero field there is no ferroelectric phase transition in bulk PMN at any temperature, indicating that the nonergodic dipolar glass phase persists down to the lowest temperatures.  相似文献   

9.
基于k·p微扰法研究单轴[110]应力作用下硅的导带结构,获得单轴[110]应力硅的导带底能量及电子有效质量.在此基础上,考虑电子谷间、谷内及电离杂质散射,采用弛豫时间近似计算单轴[110]应力硅沿不同晶向的电子迁移率.结果表明:单轴[110]应力作用下硅的电子迁移率具有明显的各向异性.在[001]、[110]及[110]输运晶向中,张应力作用下电子沿[110]晶向输运时迁移率有较大的增强,由未受应力时的1 450 cm2·Vs-1提高到2 GPa应力作用下的2 500 cm2·Vs-1.迁移率增强的主要原因是电子有效质量的减小,而应力作用下硅导带能谷分裂导致的谷间散射几率的减小对电子迁移率的影响并不显著.  相似文献   

10.
We consider a ferrofluid system consisting of magnetic particles interacting with a magnetic dipole–dipole interaction. We study the strong magnetic field regime where all magnetic dipoles are completely polarized in the direction of the magnetic field. We introduce a lattice gas model that serves to describe space ordering phenomena in such systems. It is found that, within mean field theory, this model predicts a second order phase transition to a phase with inhomogeneous lamellar-like ordering below a certain critical temperature.  相似文献   

11.
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have systematically investigated the theoretical mechanical properties of copper (Cu). The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young’s modulus E p , and Poisson’s ratio ν.  相似文献   

12.
We use Monte Carlo simulations to identify the mechanism that allows for phase transitions in dipolar spin ice to occur and survive for an applied magnetic field H much larger in strength than that of the spin-spin interactions. In the most generic and highest symmetry case, the spins on one out of four sublattices of the pyrochlore decouple from the total local exchange+dipolar+applied field. In the special case where H is aligned perfectly along the [110] crystallographic direction, spin chains perpendicular to H show a transition to q=X long-range order, which proceeds via a one- to three-dimensional crossover. We propose that these transitions are relevant to the origin of specific heat features observed in powder samples of the Dy2Ti2O7 spin ice material for H above 1 Tesla.  相似文献   

13.
We theoretically map out the ground state phase diagram of interacting dipolar fermions in one-dimensional lattice. Using a bosonization theory in the weak coupling limit at half filing, we show that one can construct a rich phase diagram by changing the angle between the lattice orientation and the polarization direction of the dipoles. In the strong coupling limit, at a general filing factor, we employ a variational approach and find that the emergence of a Wigner crystal phases. The structure factor provides clear signatures of the particle ordering in the Wigner crystal phases.  相似文献   

14.
This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5~GPa for bcc Fe, and 48.1, 34.6, 51.2~GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point `bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.  相似文献   

15.
The influence of the external magnetic field on the orientational structure and magnetic properties of the ferrocholesteric is analyzed. A soft homeotropic coupling between the magnetic particles and the cholesteric molecules is assumed. The diamagnetic anisotropy of the matrix is chosen to be positive. In this case, the dipolar and quadrupolar mechanisms of orientational interaction with the external field compete with each other. The field being applied normal to the helix. Using the continuum theory, the occurrence of magnetic-field-induced ferrocholesteric–ferronematic transition is studied. The transition field as a function of the material parameters of a ferrocholesteric is found. It is shown that rising the field strength in the ferronematic phase leads to a change in the coupling between the particles and the director from homeotropic to planar one. A study on the structure of the domain walls in ferronematic phase is undertaken.  相似文献   

16.
LaAlO3 crystals have been investigated with differential scanning calorimetry (DSC), high-precision X-ray powder diffraction (XRD) and scanning force microscopy (SFM). The DSC measurements show the second-order phase transition of LaAlO3 at 544°C, where LaAlO3 changes its symmetry from the cubic Pm3m high-temperature phase to the pseudocubic rhombohedral low-temperature phase. This paraelastic to improper ferroelastic phase transition causes twinning in the {100} and {110} planes of the pseudocubic lattice. The twin angles between the surface {100}pseudocubic planes of twin domains were measured by SFM on the surface of a macroscopic (100)cubic cut crystal plate. The misorientation angle ω100 between {100} twins is 0.195(8)°, while {110} twinning gives an angle of ω110=0.276(7)°. The two twin kink angles correspond to a rhombohedral angle of the pseudocubic cell of the phase as 1=90.0973(40)° and 2=90.0975(30)°, respectively. The XRD result for this rhombohedral angle is =90.096(1)°. The orientation of the misfit steps formed during annealing after mechanical surface polishing depends on the domain orientation and pattern during polishing. Any heating close to or above Tc changes the domain pattern. Footprints of previous domain patterns can thus be found on the surface in the form of surface corrugation and changes in the shape and orientation of misfit steps.  相似文献   

17.
Liu Yue-Lin  Gui Li-Jiang  Jin Shuo 《中国物理 B》2012,21(9):96102-096102
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have investigated the theoretical mechanical properties of copper (Cu) systematically. The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young's modulus Ep, and Poisson's ratio ν.  相似文献   

18.
In this paper the influence of mechanical stress on magnetoelastic properties, i.e., magnetostriction and thermal expansion in the neighborhood of a structural phase transition of the Jahn-Teller crystal TmVO4 is investigated experimentally and theoretically. It is shown that the magnetoelastic properties of TmVO4 for a magnetic field H∥[001] do not change the domain structure of the sample, which is rather well described when mechanical stresses in the crystal are taken into account using the parameter . Conversely, for magnetic fields along the direction of spontaneous strain [110] the magnetoelastic properties are primarily caused by reorientation of the Jahn-Teller domains and short-range order effects. It is shown that the “true” magnetostriction of a single-domain crystal for H∥[110] diverges at the phase transition point T c=2.15 K in the absence of mechanical stresses and is strongly decreased by these stresses. Fiz. Tverd. Tela (St. Petersburg) 40, 701–705 (April 1998)  相似文献   

19.
李诚迪  赵敬龙  仲崇贵  董正超  方靖淮 《物理学报》2014,63(8):87502-087502
EuTiO_3是钙钛矿结构的量子顺电体,实验发现其基态具有平面各向异性G类反铁磁结构,本文运用基于密度泛函理论的第一性原理计算研究了EuTiO_3处于量子顺电相和应力作用下处于铁电四方相时可能的自旋取向和自旋交换耦合作用,分析了自旋耦合作用的路径,探讨了应力对磁性交换路径的作用,结果发现:当体系自由时,EuTiO_3具有自旋沿[110]方向平面内单轴各向异性的G类反铁磁结构,该结构下Eu离子4f电子自旋通过处于面心位置的O 2p实现自旋反铁磁性的超交换耦合,而在外加应力诱导的铁电四方结构下,由于自旋交换路径中Eu—O—Eu键角改变,Eu 4f电子自旋实现了[110]方向的铁磁交换耦合。  相似文献   

20.
The strain behaviors as well as the structural and magnetic changes relative to the pretransition in the Ni50.5Mn24.5Ga25 single crystals have been characterized by various methods, such as pretransition strain, magnetostriction, magnetization measurements, and TEM observations. A large magnetostriction up to 505 ppm measured in the [001] direction of the sample is obtained at the pretransition temperature with only a low magnetic field of about 1 kOe applied along the [010] direction. We found that not only the pretransition strain pronounces a more large change, but also the magnetostriction at a certain temperature exhibits a more large magnitude for field applied along the [010] direction than with field along the [001] direction. It is concluded that the magnetoelastic interaction is responsible for the premartensitic transition, and the magnetoelastic interaction in the [010] direction is stronger than that in the [001] direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号