首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
可搬运光学原子钟在科学研究和工程应用中具有重要意义.本文测量了可搬运87Sr光晶格钟系统的主要频移,包括黑体辐射频移、碰撞频移、晶格光交流斯塔克频移、二阶塞曼频移等.首先实验上测量了磁光阱腔体表面的温度分布,分析了不同热源对原子团的影响,得到黑体辐射总的相对频移修正量为50.4×10^-16.相对不确定度为5.1×10^-17.然后利用分时自比对方法,评估了碰撞频移、晶格光交流斯塔克频移和二阶塞曼频移.结果表明,由黑体辐射引起的频移量最大,晶格光交流斯塔克频移的不确定度最大,系统总的相对频移修正量为58.8×10^-16,总不确定度为2.3×10^-16.该工作为可搬运87Sr光晶格钟之后的性能提升和应用提供了条件.  相似文献   

2.
We place two atoms in quantum superposition states and observe coherent phase evolution for 3.4×10(15) cycles. Correlation signals from the two atoms yield information about their relative phase even after the probe radiation has decohered. This technique allowed a frequency comparison of two (27)Al(+) ions with fractional uncertainty 3.7(-0.8)(+1.0)×10(-16)/√[τ/s]. Two measures of the Q factor are reported: The Q factor derived from quantum coherence is 3.4(-1.1)(+2.4)×10(16), and the spectroscopic Q factor for a Ramsey time of 3 s is 6.7×10(15). We demonstrate a method to detect the individual quantum states of two Al(+) ions in a Mg(+)-Al(+)-Al(+) linear ion chain without spatially resolving the ions.  相似文献   

3.
B K SAHOO 《Pramana》2014,83(2):255-263
We present here an overview of the role of the multipolar black-body radiation (BBR) shifts in the single ion atomic clocks to appraise the anticipated 10?18 uncertainty level. With an attempt to use the advanced technologies for reducing the instrumental uncertainties at the unprecedented low, it is essential to investigate contributions from the higher-order systematics to achieve the ambitious goal of securing the most precise clock frequency standard. In this context, we have analysed contributions to the BBR shifts from the multipolar polarizabilities in a few ion clocks.  相似文献   

4.
We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10?18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high-precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second-order Doppler shift contributes less than 10?18 to the relative uncertainty of the frequency standard.  相似文献   

5.
The blackbody radiation (BBR) shift is an important systematic correction for the atomic frequency standards realizing the SI unit of time. Presently, there is controversy over the value of the BBR shift for the primary 133Cs standard. At room temperatures, the values from various groups differ at the 3x10(-15) level, while modern clocks are aiming at 10(-16) accuracies. We carry out high-precision relativistic many-body calculations of the BBR shift. For the BBR coefficient beta at T=300 K, we obtain beta=-(1.710+/-0.006)x10(-14), implying 6x10(-17) fractional uncertainty. While in accord with the most accurate measurement, our 0.35% accurate value is in a substantial (10%) disagreement with recent semiempirical calculations. We identify an oversight in those calculations.  相似文献   

6.
The electric quadrupole shift is presently the most significant source of uncertainty on the systematic shifts for several single-ion optical frequency standards. We present a simple method for cancelling this shift based on measurements of the Zeeman spectrum of the clock transition. This method is easy to implement and yields very high cancellation levels. A fractional uncertainty of 5 x 10(-18) for the canceled quadrupole shift is estimated for a measurement of the absolute frequency of the 5s (2)S(1/2)-4d (2)D(5/2) clock transition of 88Sr+.  相似文献   

7.
Aided by ultrahigh resolution spectroscopy, the overall systematic uncertainty of the 1S0-3P0 clock resonance for lattice-confined 87Sr has been characterized to 9 x 10(-16). This uncertainty is at a level similar to the Cs-fountain primary standard, while the potential stability for the lattice clocks exceeds that of Cs. The absolute frequency of the clock transition has been measured to be 429 228 004 229 874.0(1.1) Hz, where the 2.5 x 10(-15) fractional uncertainty represents the most accurate measurement of a neutral-atom-based optical transition frequency to date.  相似文献   

8.
We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10(-16) accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10(-18).  相似文献   

9.
We measure the frequency of the 5s21S0-5s5p 3P0 narrowline clock transition at 236.5 nm, for a single, trapped and laser cooled 115In+ ion. In the experiment, an ultra-narrow linewidth laser (<1.34 Hz at 3 s integration time) is used to interrogate the clock transition for high resolution spectroscopy. A linewidth of 43 Hz of the clock transition is observed. The uncertainty of the line centroid is 18 Hz, leading to a fractional uncertainty of 1.4×10-14. The frequency is measured by using an optical frequency comb referenced to a cesium clock. The transition frequency is found to be 1, 267, 402, 452, 901.265 (256) kHz, averaged over 13 days of separate measurement. The accuracy of 2.35×10-13 is due to the reference cesium clock calibrated against UTC time. We discuss ways for further improvements.  相似文献   

10.
Optical lattice induced light shifts in an yb atomic clock   总被引:1,自引:0,他引:1  
We present an experimental study of the lattice-induced light shifts on the (1)S(0) --> (3)P(0) optical clock transition (nu(clock) approximately 518 THz) in neutral ytterbium. The "magic" frequency nu(magic) for the 174Yb isotope was determined to be 394 799 475(35) MHz, which leads to a first order light shift uncertainty of 0.38 Hz. We also investigated the hyperpolarizability shifts due to the nearby 6s6p(3)P(0) --> 6s8p(3)P(0), 6s8p(3)P(2), and 6s5f(3)F(2) two-photon resonances at 759.708, 754.23, and 764.95 nm, respectively. By measuring the corresponding clock transition shifts near these two-photon resonances, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 microK deep, lattice at the magic wavelength. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10(-17).  相似文献   

11.
We have analyzed the constant loss contribution to the ac conductivity in the frequency range 10 Hz-1 MHz and temperatures down to 8 K, for two Li ionic conductors, one crystalline (Li(0.18)La(0.61)TiO(3)) and the other glassy (61SiO(2);35Li(2)O.3Al(2)O3.P(2)O(5)). As temperature is increased a crossover is observed from a nearly constant loss to a fractional power law frequency dependence of the ac conductivity. At any fixed frequency omega, this crossover occurs at a temperature T such that omega approximately nu(0)exp(-E(m)/k(B)T), where nu(0) is the attempt frequency and E(m) is identified with the barrier for Li+ ions to leave their wells.  相似文献   

12.
We present an assessment of the (6s2) (1)S0 ? (6s6p)(3)P0 clock transition frequency in 199Hg with an uncertainty reduction of nearly 3 orders of magnitude and demonstrate an atomic quality factor Q of ~10(14). The 199Hg atoms are confined in a vertical lattice trap with light at the newly determined magic wavelength of 362.5697±0.0011 nm and at a lattice depth of 20E(R). The atoms are loaded from a single-stage magneto-optical trap with cooling light at 253.7 nm. The high Q factor is obtained with an 80 ms Rabi pulse at 265.6 nm. We find the frequency of the clock transition to be 1,128,575,290,808,162.0±6.4(syst)±0.3(stat) Hz (i.e., with fractional uncertainty=5.7×10(-15)). Neither an atom number nor second order Zeeman dependence has yet been detected. Only three laser wavelengths are used for the cooling, lattice trapping, probing, and detection.  相似文献   

13.
We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10) Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.  相似文献   

14.
The relative abundance of the three decay modes B(0)→D(-)K(+), B(0)→D(-)π(+), and B(s)(0)→D(s)(-)π(+) produced in 7 TeV pp collisions at the LHC is determined from data corresponding to an integrated luminosity of 35 pb(-1). The branching fraction of B(0)→D(-)K(+) is found to be B(B(0)→D(-)K(+)) = (2.01 ± 0.18(stat) ± 0.14(syst)) × 10(-4). The ratio of fragmentation fractions f(s)/f(d) is determined through the relative abundance of B(s)(0)→D(s)(-)π(+) to B(0)→D(-)K(+) and B(0)→D(-)π(+), leading to f(s)/f(d) = 0.253 ± 0.017 ± 0.017 ± 0.020, where the uncertainties are statistical, systematic, and theoretical, respectively.  相似文献   

15.
We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz. The isotopic shift between Sr87 and Sr88 is 62188135Hz with fractional uncertainty 5x10(-7). We discuss the necessary conditions to reach a clock accuracy of 10(-17) or less by using this scheme.  相似文献   

16.
We report the observation of two narrow resonances consistent with states of orbitally excited (L=1) B_(s) mesons using 1 fb;(-1) of pp[over ] collisions at sqrt[s]=1.96 TeV collected with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. We use two-body decays into K- and B+ mesons reconstructed as B(+)-->J/psiK(+), J/psi-->mu(+)mu(-) or B(+)-->D[over ](0)pi(+), D[over ](0)-->K(+)pi(-). We deduce the masses of the two states to be m(B_(s1))=5829.4+/-0.7 MeV/c(2) and m(B_(s2);(*))=5839.6+/-0.7 MeV/c;(2).  相似文献   

17.
We present a measurement of relative partial widths and decay rate CP asymmetries in K-K+ and pi(-)pi(+) decays of D0 mesons produced in pp collisions at sqrt[s]=1.96 TeV. We use a sample of 2x10(5) D(*+)-->D0pi(+) (and charge conjugate) decays with the D0 decaying to K-pi(+), K-K+, and pi(-)pi(+), corresponding to 123 pb(-1) of data collected by the Collider Detector at Fermilab II experiment at the Fermilab Tevatron collider. No significant direct CP violation is observed. We measure Gamma(D0-->K-K+)/Gamma(D0-->K-pi(+))=0.0992+/-0.0011+/-0.0012, Gamma(D0-->pi(-)pi(+))/Gamma(D0-->K-pi(+))=0.035 94+/-0.000 54+/-0.000 40, A(CP)(K-K+)=(2.0+/-1.2+/-0.6)%, and A(CP)(pi(-)pi(+))=(1.0+/-1.3+/-0.6)%, where, in all cases, the first uncertainty is statistical and the second is systematic.  相似文献   

18.
The absolute frequency of the In(+) 5s(2) (1)S(0)5s5p (3)P(0) clock transition at 237 nm was measured with an accuracy of 1.8 parts in 10(13). Using a phase-coherent frequency chain, we compared the (1)S(0)(3)P(0) transition with a methane-stabilized HeNe laser at 3.39 mum, which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the HeNe standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In(+) clock transition was found to be 1 267 402 452 899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the HeNe laser reference. This result represents an improvement in accuracy of more than 2 orders of magnitude over previous measurements of the line and now stands as what is to our knowledge the most accurate measurement of an optical transition in a single ion.s.  相似文献   

19.
We present measurements of branching fractions and charge asymmetries in B-meson decays to rho(+)pi(0), rho(0)pi(+), and rho(0)pi(0). The data sample comprises 89x10(6) Upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions B(B+-->rho(+)pi(0))=[10.9+/-1.9(stat)+/-1.9(syst)]x10(-6) and B(B+-->rho(0)pi(+))=(9.5+/-1.1+/-0.9)x10(-6), and we set a 90% confidence-level upper limit B(B0-->rho(0)pi(0))<2.9x10(-6). We measure the charge asymmetries ACP(pi(0))(rho(+))=0.24+/-0.16+/-0.06 and ACP(pi(+))(rho(0))=-0.19+/-0.11+/-0.02.  相似文献   

20.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号