首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FLEC®-SPME sampler, described in a previous paper, consists of an emission cell coupled with solid phase microextraction (SPME) for passive sampling of VOCs emitted from building materials. It represents an interesting alternative to standard dynamic sampling protocol as it is easier to implement. If standard dynamic sampling determines emission rates, passive FLEC®-SPME aims to the determination of the concentration in air at the material surface. That could be assumed provided that material/air equilibrium is reached. Thus, VOCs emission kinetics were studied for 3 different materials (pine wood panel, carpet and PVC floor) to determine equilibrium times. Then, the relevance of the method has been assessed using new materials through a 3-day emission test. Qualitative results were compared to those obtained from the standard method to check the ability of FLEC®-SPME to detect the most toxic compounds, named “VOCs of interest” and listed in the French regulation. Minor differences were observed, so this methodology seems promising, especially for field studies aiming in the identification of VOCs sources in buildings. Moreover, the concentration at the material surface combined to emission modeling could be used to predict indoor VOCs concentrations helping in indoor air quality diagnostic.  相似文献   

2.
Solid-phase microextraction (SPME) is a convenient and efficient sampling technique recently applied to indoor air analysis. We propose here a theoretical model of the adsorption kinetics of toluene on SPME fibre under static extraction conditions. We discuss the effects of sampling volume and initial concentration of analyte on the adsorption kinetics. This model is used to estimate the limits of detection taking into account operating conditions and to calculate theoretical calibration curves. Results of comparison with experimental data are encouraging: only 11% difference for calibration curves and 30% for the estimation of the limit of detection. On the basis of this kinetics model, the solid concentration gradient in the Carboxen coating was modelled with Fick’s second law of diffusion in unsteady-state mass-transfer mode. Mass diffusion from the gas sample to the SPME fibre was also investigated. It was shown that diffusion is the limiting step of the mass-transfer process in the static mode. Thus, the model developed, allows a better understanding of adsorption on Carboxen fibre and in the future could be a useful tool for cheap and time-saving development of SPME methods and the estimation of sampling performance. Figure PDMS/Carboxen SPME fibre (scanning electron microscopy – magnification x 220)  相似文献   

3.
Tuduri L  Desauziers V  Fanlo JL 《The Analyst》2003,128(8):1028-1032
Adsorptive solid-phase microextraction (SPME) fibres have proven to be a reliable means of sampling volatile organic compounds (VOCs) in air. In this work, polydimethylsiloxane/carboxen (PDMS/CAR) fibres were used to test a new approach of air sampling strategy with SPME in the lab which could lighten calibration procedure and enhance the use of this already rapid, simple, convenient and cost effective sampling technique. Indeed, only one curve can be used whatever the extraction time chosen by the analyst under constant conditions of air velocity and temperature. Ficks' law of diffusion was used to model SPME grab sampling when the fibre was totally exposed to the air sample. Experimental sampling rates were then determined by GC-FID for different sampling conditions, i.e. in a flowing air stream of known velocity ("dynamic mode") and in a stagnant air ("static mode"). These sampling rates were found to be 3.50 and 17.80 mL min(-1) for acetone, 4.06 and 21.20 mL min(-1) for 1,2-dichloroethane, 5.10 and 27.80 mL min(-1) for toluene and 5.36 and 30.80 mL min(-1) for butyl acetate, for static and dynamic sampling modes respectively. Deviation from linearity of the calibration curves, indicating that a significant fraction of the adsorption sites are occupied, were determined. They were found to be approximately equal to 0.9, 1.57, 3.82 and 4.37 nmol for acetone, dichloroethane, toluene and butyl acetate, respectively. Experimentally determined sampling rates of these isolated compounds were also valid when a complex equimolar gaseous mixture was investigated, but deviation from linearity appears earlier. Then, for a given application, sampling times should be chosen very carefully to avoid competitive adsorption and hence, bad quantitative analysis results.  相似文献   

4.
An electric drill coupled with a solid-phase microextraction (SPME) polydimethylsiloxane (PDMS) fiber or a PDMS thin film was used for rapid sampling of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Laboratory experiments demonstrated that the sampling rates of SPME fiber and thin film can be predicted theoretically. Compared with the SPME fiber, the PDMS thin film active sampler exhibited a higher sampling rate and much better sensitivity due to its higher surface-to-volume ratio and its larger extraction phase volume. The amount of the analytes extracted by the thin film was around 100 times higher than those obtained by fiber, for both 5 min rapid sampling and equilibrium extraction. A new thin film active sampler was then developed for rapid on-site water sampling. The sampling kit included a portable electric drill, a copper mesh pocket, a piece of thin film, and a liner. Laboratory experiments indicated that the sampling remained in the linear uptake phase with this sampler to 8 min for the PAHs. Field test illustrated that this novel sampler was excellent for rapid on-site water sampling due to its short sampling period, high sampling efficiency and durability The thin film sampling kit facilitates on-site sampling, sample preparation, storage and transport. This new sampler is more user-friendly and easier to commercialize than previous samplers.  相似文献   

5.
Solid-phase microextraction (SPME) with adsorptive Carboxen/PDMS fibre is a powerful sampling device for volatile organic compounds (VOCs) at trace levels in air. However, owing to competitive adsorption, quantification remains a challenging task. In this area, a theoretical model, based on Fick's laws and an extended Langmuir equation, is proposed to deal with the adsorption kinetics of acetone/toluene mixture on SPME fibre under various static extraction conditions. The semipredictive model is first used to determine the axial diffusion coefficients of analytes in the sampling device. The model is then tested with a complex VOC mixture, showing good agreement with experimental data.  相似文献   

6.
This work presents the usefulness of five different solid-phase microextraction fibers in the screening of volatile organic compound (VOC) traces in air samples. The performances of these fibers are compared by studying the sorption kinetics in an equimolar gaseous mixture of eleven VOCs. For each fiber, static and dynamic sampling are compared. It is shown that repeatability is better for the dynamic mode (less than 6% for dynamic sampling and 10% for static sampling). The equilibrium time and the sensitivity vary considerably from one fiber type to another. As an example, the classical polydimethylsiloxane (PDMS) coating presented the shortest equilibration time (5 min) but also the poorest sensitivity, whereas the PDMS-Carboxen showed the longest extraction time but the greatest sensitivity. The estimation of the quantity of VOCs fixed on the target fiber allows for the determination of the different affinities of the compounds with the involved sorbent and relates them with physicochemical properties of the molecules. Competitive sorption is observed for the fibers involved with the adsorption process (i.e., PDMS-divinylbenzene and PDMS-Carboxen fibers). These competitions can lead to SPME calibration problems and thus bad quantitative analysis.  相似文献   

7.
For low volatile pesticides, the applications of solid-phase microextraction (SPME) as an air sampler were reported with sampling time chosen in the linear stage of the sorption kinetics because of long equilibrium time. In these pre-equilibrium conditions, sampling rates (SRs) expressed as the volume of air sampled by the SPME sampler per unit of time, were used to estimate analytes concentrations in air. In the present study, to achieve good extraction performance and accurate calibration, the sorption kinetics of several pesticides with SPME were investigated in detail, with a focus on parameters influencing SRs. Linear air velocity was found to be the main parameter affecting SRs. For exposed fibers, with air velocities below 20–25 cm s−1, SRs increased with increasing air velocity. When linear air velocity was equal to or greater than 25–30 cm s−1, it had little effect on SRs. To improve the flexibility of SPME, different configurations of SPME were compared, i.e. different lengths of fibers exposed, retracted fibers, exposed fibers with grids. SRs were linearly proportional to exposed lengths of fibers. Using grids, lower SRs and wider calibration time range were achieved. SRs for retracted fibers were the lowest among the different experimented configurations. The accuracy of calibration was improved and more flexibility of SPME was provided.  相似文献   

8.
In this research, field samplers are developed using polydimethylsiloxane (PDMS) thin-film as the extraction phase. This technique is based on a similar theory, the solid-phase microextraction (SPME) technique. More specifically, the development of the field sampler involves cutting a section of PDMS thin-film into a specific size and shape, and mounting it onto a stainless steel wire (the handle). The thin-film is then placed into a protective copper cage prior to deployment to prevent biofouling. Kinetic calibration or equilibrium calibration with the standards in the extraction phase is used to introduce an isotopically labeled internal standard for on-site calibration. The initial loading of the standard onto the thin-film and the amount of standard remaining on the thin-film are determined using gas chromatography-mass spectrometry and subsequently used to estimate the concentration of the target analytes. In addition, the field samplers are deployed in the field at two locations (the Meuse River in Eijsden, The Netherlands from April to May, 2005 and Hamilton Harbour located at the western tip of Lake Ontario, ON, Canada from September to December, 2006). Polycyclic aromatic hydrocarbons are identified, and concentrations of fluoranthene and pyrene are estimated in the low ng/L range. The results from both sampling sites are within the expected ranges for environmental samples. This polymeric extraction phase has a high surface-to-volume ratio compared with SPME, which results in higher sensitivity and mass uptake, leading to the detection of lower levels of analytes that many other techniques are unable to achieve.  相似文献   

9.
A novel diffusive sampler that combines radial and axial diffusion has been developed that improves upon existing commercially available designs. The POcket Diffusive (POD) sampler has been validated under laboratory and field conditions for the measurements of VOCs in ambient air. Laboratory tests varied sampling conditions of temperature (−30–40 C), humidity (10–80%), wind velocity (0.1–4 m s−1), and concentration (0.5–50 μg m−3) for a number of specific VOCs. An overall uncertainty of circa 9% for the measurement of benzene is calculated for the validation tests, in compliance with the data quality objectives of the EU air quality directive 2008/50/EC. A semi-empirical diffusion model has been developed to estimate sampling rates for compounds that were not tested, and for conditions outside of tested ranges during validation. The diffusion model (and validation tests) shows a low influence of environmental conditions on the sampling rate for the POD sampler. Average reproducibility values of circa 3% are reported with overall sampling uncertainties ranging from 9% to 15%, for the whole range of tested conditions, depending on the compound. The adsorbent cartridge is compatible with existing thermal desorption systems in the market. The diffusive sampler can modify the sampling rate by changing the diffusive body within a range of different porosities. Field tests, conducted in parallel with independent quality controlled canister sampling, confirmed the ease of use and quality of VOC measurements with the POD sampler, for compounds that were, and were not, evaluated during laboratory tests.  相似文献   

10.
《Analytical letters》2012,45(15):2457-2465
In order to explore the analytical performance of Headspace-Solid-phase Microextraction (HS-SPME), the sensitivity of gas chromatography (GC)-Mass Spectrometry (MS) determinations was examined in terms of calibration slopes, that is, response factor values of selected volatile organic compounds (VOC). The HS-SPME was applied to extract two kinds of gaseous VOC analytes, namely group I (methyl ethyl ketone, isobutyl alcohol, methyl isobutyl ketone, and butyl acetate, all having high water solubility) and group II (benzene, toluene, styrene, and xylene, all having moderate water solubility) from water solutions. The results, derived by both external and internal calibration, were then evaluated by considering headspace sample volume and solute volatility. In the case of solutes consisting of group I, sensitivity seems to increase with increasing HS size, although there are no such discernible patterns for group II solutes. The observed relative patterns in extraction efficiency may be accounted for by the differences in intermolecular forces present between the compounds of groups I and II and the possible effects of diffusion kinetics of the VOCs to the SPME fiber or competitive adsorption between different VOCs. As such, sensitivity of HS-SPME is tightly affected by the air-water partitioning properties of the target compounds and the response of SPME to such properties.  相似文献   

11.
A new sampling method is proposed for solid-phase microextraction (SPME), in which the extraction is carried out in a glass capillary containing a few microliters of sample. When an adsorption-type fiber is used for SPME, the equilibrium between aqueous sample and coating can be described by a Langmuir isotherm. Since the total amount of analytes and coexisting substances stays at a low level in a small volume of sample, the linear concentration range of analytes will be extended for SPME to be applied in quantification and the interference caused by sample matrix will be reduced. In addition, sampling in a capillary has a short diffusion distance and extraction equilibrium is established in 5-10 min. It is important in clinical analysis and therapeutic drug monitoring to be able to analyse sample volumes of samples. The feasibility of the new sampling method is demonstrated by the extractions of p-hydroxybenzaldehyde and a synthetic solution containing 1-naphthol, paeonol and 1-naphthylamine.  相似文献   

12.
Gorlo D  Wolska L  Zygmunt B  Namieśnik J 《Talanta》1997,44(9):1543-1550
A calibration procedure for solid phase microextraction-gas chromatographic (SPME-GC) analysis of organic vapours in air was described in which GC detector (MS in this case) signal is directly related to concentration of analytes of interest sampled by SPME. Gaseous standard mixtures used for the calibration were generated by means of a home-made permeation-type apparatus described elsewhere, W. Janicki et al., Chem. Anal., 38 (1993) 423 and modified to permit easy sampling of analytes on an SPME fibre. To establish sampling parameters, times for equilibrium partitioning of five selected organic compounds (carbon tetrachloride, toluene, chlorobenzene, p-xylene, n-decane) between gaseous mixtures and the fibre (fused silica fibre coated with 100 mum polydimethylsiloxane) were determined. For 10 min sampling time, the detector response and hence amount sampled on the fibre were linear functions of analytes concentration in a gaseous sample.  相似文献   

13.
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ~5?×?10?2 m2 or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ~1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ~1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.  相似文献   

14.
Applications of solid-phase microextraction (SPME) in the measurement of very hydrophobic organic compounds (VHOCs) are limited, partly due to the difficulty of calibrating SPME fibers for VHOCs. This study used a static SPME strategy with a large sample volume (1.6 L) and a five-point calibration procedure to determine the distribution coefficients for a large suite of polychlorinated biphenyls (PCBs) and chlorinated pesticides between a polydimethylsiloxane (PDMS) phase (100 microm thickness) coated on a glass fiber and seawater. An extraction time of 12 days was deemed adequate for equilibrium calibration from kinetic experiments. Two groups of randomly selected fibers divided into three batches (up to nine fibers in each batch) were processed separately with two gas chromatography-mass spectrometry (GC-MS) systems. Matrix effects arising from losses of the analytes to glass container walls and stirring bars were corrected. Relative standard deviations within the same batch were generally smaller than those for the entire group. Furthermore, KfVf (Kf and Vf are the distribution coefficient of an analyte between the polymer-coated fiber and aqueous phase and the fiber volume, respectively) values determined with two GC-MS systems were statistically different. These results indicate the calibrated KfVf values were less affected by the random selection of SPME fibers than by other experimental conditions, and therefore average KfVf values may be used for the same type of commercially available SPME fibers. The relative accuracy of our calibration method was similar to that of a previous study [P. Mayer. W.H.J. Vaes, J.L.M. Hermens, Anal. Chem. 72 (2000) 459] employing different coating thickness and calibration procedure. The present study also obtained a bell-shaped relationship between log Kf and log Kow (octanol-water partition coefficient) for PCB congeners with the maximum log Kf corresponding to log Kow approximately 6.5. This bell-shaped relationship was attributed mainly to steric effects arising from the interplay between the PDMS thickness and molecular sizes of the target analytes.  相似文献   

15.
In order to develop a valuable method for accurate screening of biogenic emissions from undisturbed living plants or for plant-insect interactions, solid-phase microextraction (SPME) has been combined with dynamic branch enclosure cuvettes and enantioselective GC/MS. The study was conducted at Hyyti?l? forest station, Finland within a boreal coniferous forest dominated by Scots pine (Pinus sylvestris). The SPME method was optimized for monoterpenes by testing three fibre coatings: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and carbowax/divinylbenzene (CW/DVB) and determining the optimum exposure time. The PDMS/DVB fibre was found to be most suitable and was used to characterize emissions of P. sylvestris enclosed in dynamic branch enclosure cuvettes by exposure for 1 min followed by desorption and separation on a beta-cyclodextrin column installed in the GC/MS oven. Dynamic cuvette measurements have been compared to static headspace SPME samples of the emission of detached needles from the same tree species and a portable dynamic air sampler (PDAS)-SPME for sampling the ambient air around the same trees. The method developed has allowed an accurate characterization of the gaseous emission of P. sylvestris and the identification of 17 isoprenoids comprising chiral and achiral monoterpenes. Two chemotypes of Scots pine can be differentiated through their emission of (+)-delta-3-carene. While SPME-dynamic cuvette, portable dynamic sampler and absorbent results agreed well, significant differences in enantiomeric ratios were observed in natural emissions and those of damaged leaves. Therefore, in enantioselective studies of plant-insect and/or plant-plant interactions, the two enantiomers of a given monoterpene should be treated as two separate substances.  相似文献   

16.
In this study, a new calibration method, standard-free kinetic calibration, is proposed for rapid on-site analysis by solid-phase microextraction (SPME), based on the diffusion-controlled mass transfer model and equilibrium extraction. With this calibration method, all analytes can be directly calibrated with only two samplings. The feasibility of this calibration method was validated in a standard aqueous solution flow-through system and a standard gas flow-through system. The distribution coefficients of five polycyclic aromatic hydrocarbons (PAHs), including naphthalene, acenaphthene, fluorene, anthracene, and pyrene, between water and the PDMS fiber coating were determined and the concentrations of the PAHs in the flow-through system were successfully calibrated with the proposed standard-free calibration method. The extracted amounts of BTEX (benzene, toluene, ethylbezene, o-xylene) at equilibrium were also successfully calibrated with this method with two rapid sampling periods at 5 and 10 s. Compared with the previous calibration methods for rapid on-site analysis by SPME, this method does not require a standard to calibrate the extraction, nor does it require additional equipment to control or measure the flow velocity of the sample matrix. In addition, all of the extracted analytes can be quantified without considering whether the system reached equilibrium. The newly proposed standard-free kinetic calibration approach enriched the calibration methods available for on-site analysis by SPME.  相似文献   

17.
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid–chromatography tandem mass spectrometry (LC–MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg−1i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9 ± 30 mm−3 and 298.5 ± 25 mm−3 are in excellent agreement with the theoretical calibration constants of 307.9 mm−3 and 316.0 mm−3 for fenoterol and methoxyfenoterol respectively.  相似文献   

18.
Passive sampling relies on the uptake of contaminants into appropriate sampling devices along a diffusion gradient without using pumps or bailers. Thus, for example, in groundwater sampling, changes to flow due to pumping can be avoided. If the diffusion gradient can be maintained for extended periods, contaminants can be sampled continuously over time without any action, allowing to determine time-weighted average contaminant concentrations. We here show that the Ceramic Dosimeter, a solid receiving phase passive sampler using a ceramic membrane as sorbent container and diffusion barrier, can be used without calibration for the long-term monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater.  相似文献   

19.
Laboratory and field evaluations were performed to validate a solid-phase microextraction (SPME) device that was used as a diffusive sampler. Hydrogen bromide (HBr) was loaded onto the carboxen-polydimethylsiloxane (CAR-PDMS) fiber for the determination of ethylene oxide (EtO) with on-fiber derivatization. For laboratory evaluations, known concentrations of ethylene oxide around the threshold limit values (TLV)/time-weighted average and specific relative humidities (RHs) were generated by syringe pumps in a dynamic generation system. The SPME diffusive samplers and the commercially available 3M 3551 passive monitors were placed side-by-side in an exposure chamber which was designed to allow measurement of face velocities, temperatures, exposing vapor concentrations, and RHs. Field validations with both SPME diffusive sampler and 3M 3551 passive monitors were also performed. The correlations between the results from both SPME device and 3M 3551 passive monitor were found to be linear (r > 0.9699) and consistent (slope approximately equal to 1.12 +/- 0.07). However, the variations of diffusion coefficients at different temperatures needs to be considered and the adjustment of sampling constant was a must when sampling at temperatures different from 25 degrees C.  相似文献   

20.
The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 °C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 × 10−4 cm3 s−1 with detection limit of 58.8 μg m−3 h−1. Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号