首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Diorganotin(IV) dipyrazolinates of the type R2Sn(C15H12N2OX)2 [where C15H12N2OX = 3(2′‐Hydroxyphenyl)‐5(4‐X‐phenyl)pyrazoline {where X = H ( a ); CH3 ( b ); OCH3 ( c ); Cl ( d ) and R = Me, Prn and Ph}] have been synthesized by the reaction of R2SnCl2 with sodium salt of pyrazolines in 1:2 molar ratio, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analysis (C, H, N, Cl and Sn), molecular weight measurement as well as spectral [IR and multinuclear NMR (1H, 13C and 119Sn)] studies. The bidentate behaviour of the pyrazoline ligands was confirmed by IR, 1H and 13C NMR spectral data. A distorted trans‐octahedral structure around tin(IV) atom for R2Sn(C15H12N2OX)2 has been suggested. The free pyrazoline and diorganotin(IV) dipyrazolinates have also been screened for their antibacterial and antifungal activities. Some diorganotin(IV) dipyrazolinates exhibit higher antibacterial and antifungal effect than free ligand and some of the antibiotics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Eight tri‐ and diorganotin(IV) carboxylates with general formulae R3SnL and R2SnL2 (where R = CH3, n‐C4H9, C6H5, C7H7, and L = 2′,4′‐difluoro‐4‐hydroxy‐[1,1′]‐biphenyl‐3‐carboxylic acid) were synthesized and characterized by UV–vis, IR, conductance, multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, and mass spectrometry. The crystal structure of [(CH3)3Sn(C13H7O3F2)] indicates that the tin atom in the asymmetric unit exists in a trigonal bipyramidal geometry having a space group Pbca with an orthorhombic crystal system. These complexes were also screened for their antibacterial and antifungal activities. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:638–649, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10057  相似文献   

4.
New series of triorganotin(IV) complexes with 4′‐nitrobenzanilide semicarbazone (L1H) and 4′‐nitrobenzanilide thiosemicarbazone (L2H) of the type [R3Sn(L)] (R = ‐CH3, ‐C6H5 and n‐C4H9) were synthesized under microwave irradiation. All the complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data, viz., IR, UV–vis, 1H, 13C and 119Sn NMR. The central tin atoms of these complexes are all five‐coordinated with trigonal bipyramidal geometry. In order to assess their growth inhibitory potency semicarbazone, thiosemicarbazone and their triorganotin(IV) complexes were tested in vitro against some pathogenic fungi and bacteria. Also the ligands and their organotin(IV) complexes were studied to assess the effects of long‐term ingestion of these compounds on fertility, body and reproductive organ weights. The biochemical analyses were also performed on blood samples and reproductive organs of male rats. The findings have been presented in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The diorganotin(Ⅳ) complexes of N-(3,5-dibromosalicylidene)-α-amino acid, R2Sn(2-O-3,5-Br2C6H2CH= NCHRCOO)(where R=H, Me, i-Pr, Bz; R'=n-Bu, Cy), were synthesized by the reactions of diorganotin dichlorides with in situ formed potassium salt of N-(3,5-dibromosalicylidene)-α-amino acid and characterized by elemental analysis, IR and NMR (^1H, ^13C and ^119Sn) spectra. The crystal structures of n-Bu2Sn(2-O-3,5-Br2C6H2CH= NCHRCOO)(R=i-Pr, Bz) and Cy2Sn(2-O-3,5-Br2C6H2CH=NCHRCOO)(R=Me, Bz) were determined by X-ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry to form five- and six-membered chelate rings with the tridentate ligand. Bioassay results indicated that the compounds possess better in vitro antitumour activity against three human tumour cell lines, HeLa, CoLo205 and MCF-7, than cis-platin and moderate anti-bacterial activity against two bacteria, E. coli and S. aureus.  相似文献   

6.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The novel complex di‐n‐butyltin(IV) 2‐oxo‐propionic acid (4‐pyridinecarbonyl) hydrazone, (n‐C4H9)2Sn‐[O2CC(CH3)=N‐N=C(‐O)C5N‐4] (H2O) has been synthesized and its structure has been determined by X‐ray diffraction analysis. The complex crystallizes in orthorhombic system with space group Pca21. Crystal data: a=2.7540(9) nm, b=0.9676(3) nm, c= 1.5750(5) nm, V=4.197(2) nm3, Dc= 1.444 g/cm3, Z=8. μ= 1.241 mm?1. F(000)= 1856, R1=0.0462 and wR2=0.1001. In the crystals of the title complex, the tin atom is in six‐coordination with a distorted octahedral geometry, three oxygen atoms [O(1), O(3) and O(4)] and one nitrogen atom N(1) forming the equatorial plane and C(10)‐Sn(1)‐C(14) being the axis. Two molecules form a dimer with weak interactions of Sn‐O bonding and hydrogen bonds.  相似文献   

8.
Four novel organotin complexes of two types—[R2Sn(o‐SC6H4CO2)]6 (R=Me, 1 ?H2O; nBu, 2 ) and {[R2Sn(m‐CO2C6H4S)R2Sn(m‐SC6H4CO2)SnR2]O}2 (R=Me, 3 ; nBu, 4 )—have been prepared by treatment of o‐ or m‐mercaptobenzoic acid and the corresponding R2SnCl2 (R=Me, nBu) with sodium ethoxide in ethanol (95 %). All the complexes were characterized by elemental analysis, FT‐IR and NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X‐ray crystallography diffraction analysis. The molecular structure analyses reveal that both 1 and 2 are hexanuclear macrocycles with hydrophobic “pseudo‐cage” structures, while 3 and 4 are hexanuclear macrocycles with double‐cavity structures. Furthermore, the supramolecular structure analyses show that looser and more intriguing supramolecular infrastructures were also found in complexes 1 – 4 , which exist either as one‐dimensional chains of rings or as two‐dimensional networks assembled from the organometallic subunits through intermolecular C? H???S weak hydrogen bonds (WHBs) and π–π interactions.  相似文献   

9.
The synthesis of three 1-(4-trifluoromethylphenyl)-3-methyl-4-R1(C=O)-5-pyrazolone proligands LH (L1H; R1=C6H5: L2H; R1=CH3: L3H; R1=CF3) and their interaction with R3Sn(IV) acceptors (R=Me, Bun, Ph) are reported. When R=Me or Bun, aquo (4-acylpyrazolonate)SnR3(H2O) derivatives are obtained and the anionic donors 4-acylpyrazolonate (L) act in the O–monodentate form. These triorganotin complexes are not stable in chlorohydrocarbon solvents and decompose to R4Sn and bis(4-acyl-5-pyrazolonate)2SnR2. When R=Ph, stable (4-acyl-5-pyrazolonate)SnPh3 derivatives, both in solution and in the solid state, are obtained. The crystal structure of (1-(4-trifluoromethylphenyl)-3-methyl-4-acetylpyrazolon-5-ato)triphenyltin(IV) shows a five-coordinate tin atom in a strongly distorted cis-bipyramidal trigonal environment (axial angle=161.2(2)°) with the acylpyrazolonate donor acting as an asymmetric O2–bidentate species (Sn–O(1)=2.081(6) Å: Sn–O(2)=2.424(5) Å). Electronic effects are responsible for the different behavior shown by these trialkyl and triphenyl derivatives.  相似文献   

10.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

11.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Reaction of 2, 4, 6‐tri‐tert‐butylphenol ( 1 ) with di‐n‐butylmagnesium in the molar ratio 1:1 allows the synthesis of {(nBu)Mg(μ‐OR)2Mg(nBu)} ( 2 ) (R = 2, 4, 6‐tBu3C6H2), which reacts with excess 1 to give the homoleptic alcoholate complex {(RO)Mg(μ‐OR)2Mg(OR)} ( 3 ) (R = 2, 4, 6‐tBu3C6H2). The structures of 2 and 3 were determined by X‐ray crystallography.  相似文献   

13.
Four new diorganotin(IV) complexes of N‐(5‐halosalicylidene)tryptophane, R2Sn[5‐X‐2‐OC6H3CH?NCH(CH2Ind)COO] [Ind = 3‐indolyl; R, X = Et, Cl ( 1 ); Et, Br( 2 ); n‐Bu, Cl ( 3 ); n‐Bu, Br ( 4 )], were synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 – 3 were determined by X‐ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Intermolecular weak interactions in 1–3 link molecules, respectively, into a two‐dimensional array, a one‐dimensional infinite chain and a one‐dimensional double‐chain supramolecular structure. Bioassay results of the compounds indicated that the dibutyltin complexes 3 and 4 have potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while the diethyltin complexes 1 and 2 display weak cytotoxic activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

15.
The structures of diastereomeric pairs consisting of (S)‐ and (R)‐2‐methylpiperazine with (2S,3S)‐tartaric acid are both 1:1 salts, namely (S)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (I), and (R)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen‐bond contribution is stronger in the more soluble salt (II).  相似文献   

16.
The organotin(IV) chlorides RnSnCl4−n (n = 3, R = Ph, PhCH2, n−Bu; and n =2, R = n−Bu, Ph, PhCH2) react with 4,4′‐bipyridine (4′4‐bpy) to give [(Ph3SnCl)2(4,4′‐bpy)1.5(C6H6)0.5] ( 1 ), [(PhCH2)3‐ SnCl]2 (4,4′‐bpy) ( 2 ), [(n−Bu)3SnCl]2(4,4′‐bpy) ( 3 ), [(n−Bu)2SnCl2(4,4′‐bpy)] ( 4 ), [Ph2SnCl2(4,4′‐bpy)] ( 5 ), and [(PhCH2)2SnCl2(4,4′‐bpy)] ( 6 ). The new complexes have been characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR spectroscopy. The structures of ( 1 ), ( 2 ), ( 4 ), and ( 6 ) have been determined by X‐ray crystallography. Crystal structures of ( 1 ) and ( 2 ) show that the coordination number of tin is five. In complex ( 1 ), two different molecules exist: one is a binuclear molecule bridged by 4,4′‐bpy and another is a mononuclear one, only one N of 4,4′‐bpy coordinate to tin. Complex ( 2 ) contains an infinite 1‐D polymeric binuclear chain by weak Sn…Cl intermolecular interactions with neighboring molecules. In the complexes ( 4 ) and ( 6 ), the tin is six‐coordinate, and the 4,4′‐bpy moieties bridge adjacent dialkyltin(IV)dichloride molecules to form a linear chain. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:338–346, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20016  相似文献   

17.
A series of [(thioacyl)thio]‐ and (acylseleno)antimony and [(thioacyl)thio]‐ and (acylseleno)bismuth, i.e., (RCSS)xMR and (RCOSe)xMR (M = Sb, Bi, R1 = aryl, x = 1–3), were synthesized in moderate to good yields by treating piperidinium or sodium carbodithioates and ‐selenoates with antimony and bismuth halides. Crystal structures of (4‐MeC6H4CSS)2Sb(4‐MeC6H4) ( 9b′ ), (4‐MeOC6H4COSe)2Sb(4‐MeC6H4) ( 12c′ ), (4‐MeOC6H4COS)2Bi(4‐MeC6H4) ( 15c′ ), and (4‐MeOC6H4CSS)2BiPh ( 18c ) along with (4‐MeC6H4COS)2SbPh ( 6b ) and (4‐MeC6H4COS)3Sb ( 7b ) were determined (Figs. 1 and 2). These compounds have a distorted square pyramidal structure, where the aryl or carbothioato (= acylthio) ligand at the central Sb‐ or Bi‐atom is perpendicular to the plane that includes the two carbodithioato (= (thioacyl)thio), carboselenato (= acylseleno), or carbothioato ligand and exist as an enantiomorph pair. Despite the large atomic radii, the C?S ??? Sb distances in (RCSS)2MR1 (M = As, Sb, Bi; R1 = aryl) and the C?O ??? Sb distances in (RCOS)xMR (M = As, Sb, Bi; x = 2, 3) are comparable to or shorter than those of the corresponding arsenic derivatives (Tables 2 and 3). A molecular‐orbital calculation performed on the model compounds (MeC(E)E1)3?xMMex (M = As, Sb, Bi; E = O, S; E1 = S, Se; x = 1, 2) at the RHF/LANL2DZ level supported this shortening of C?E ??? Sb distances (Table 4). Natural‐bond‐orbital (NBO) analyses of the model compounds also revealed that two types of orbital interactions nSσ and nSσ play a role in the (thioacyl)thio derivatives (MeCSS)3?xMMex (x = 1, 2) (Table 5). In the acylthio‐MeCOSMMe2 (M = As, Sb, Bi), nOσ contributes predominantly to the orbital interactions, but in MeCOSeSbMe2, none of nOσ and nOσ contributes to the orbital interactions. The nSσ and nSσ orbital interactions in the (thioacyl)thio derivatives are greater than those of nOσ and nOσ in the acylthio and acylseleno derivatives (MeCOE)3?xMMex (E = S, Se; M = As, Sb, Bi; x = 1, 2). ?The reactions of RCOSeSbPh2 (R = 4‐MeC6H4) with piperidine led to the formation of piperidinium diphenylselenoxoantimonate(1?) (= piperidinium diphenylstibinoselenoite) (H2NC5H10)+Ph2SbSe?, along with the corresponding N‐acylpiperidine (Table 6). Similar reactions of the bis‐derivatives (RCOSe)2SbR1 (R, R1 = 4‐MeC6H4) with piperidine gave the novel di(piperidinium) phenyldiselenoxoantimonate(2?) (= di(piperidinium) phenylstibonodiselenoite), [(H2NC5H10)+]2(PhSbSe2)2?, in which the negative charges are delocalized on the SbSe2 moiety (Table 6). Treatment of RCOSeSbR (R, R1 = 4‐MeC6H4) with N‐halosuccinimides indicated the formation of Se‐(halocyclohexyl) arenecarboselenoates (Table 8). Pyrolysis of bis(acylseleno)arylbismuth at 150° gave Se‐aryl carboselenoates in moderate to good yields (Table 9).  相似文献   

18.
Four novel diorganotin(IV) complexes with general formula R2SnL (R = nBu, PhCH2) were synthesized from diorganotin dichlorides and binary Schiff‐bases (H2L) containing N2O2 donor atoms in the presence of sodium ethoxide. The Schiff bases were prepared by reactions of o‐phenylenediamine with 3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzaldehyde (H2L1) and salicylaldehyde (H2L2) respectively. The compounds were characterized by elemental analyses, IR, and NMR spectroscopy. The solid‐state crystal structure of the compound nBu2SnL1 was determined by single‐crystal structural analysis.  相似文献   

19.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

20.
Three pyridyl functionalized bis(pyrazol‐1‐yl)methanes, namely 2‐[(4‐pyridyl)methoxyphenyl] bis(pyrazol‐1‐yl)methane (L1), 2‐[(4‐pyridyl)methoxyphenyl]bis(3,5‐dimethylpyrazol‐1‐yl)methane (L2) and 2‐[(3‐pyridyl)methoxyphenyl]bis(pyrazol‐1‐yl)methane (L3) have been synthesized by the reactions of (2‐hydroxyphenyl)bis(pyrazol‐1‐yl)methanes with chloromethylpyridine. Treatment of these three ligands with R2SnCl2 (R = Et, n‐Bu or Ph) yields a series of symmetric 2:1 adducts of (L)2SnR2Cl2 (L = L1, L2 or L3), which have been confirmed by elemental analysis and NMR spectroscopy. The crystal structures of (L2)2Sn(n‐Bu)2Cl2·0.5C6H14 and (L3)2SnEt2Cl2 determined by X‐ray crystallography show that the functionalized bis(pyrazol‐1‐yl)methane acts as a monodentate ligand through the pyridyl nitrogen atom, and the pyrazolyl nitrogen atoms do not coordinate to the tin atom. The cytotoxic activity of these complexes for Hela cells in vitro was tested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号