首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An experimental approach was developed to determine the intrinsic thermolysis rate constants of the central carbon–carbon bond during the dl/meso isomerization of diethyl 2,3‐dicyano‐2,3‐di(p‐substituted phenyl)succinates (G=H, Me, OMe, Cl, and NO2) at temperatures ranging from 80 to 120 °C. The obtained rate constants are significantly affected by the polarity of the para substituents, in sharp contrast to their negligible effects on the dl/meso isomerization equilibrium constants. Moreover, the substituent effects on the activation enthalpies can be linearly correlated with the Hammett substituent resonance constants and the homolytic dissociation enthalpies (bond dissociation energies) of the benzylic C–H bonds of ethyl 2‐cyano‐2‐(p‐substituted phenyl)acetates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Deep levels introduced by low‐energy (200 keV) electron irradiation in n‐type 4H‐SiC epitaxial layers grown by chemical vapour deposition were studied by deep level transient spectroscopy (DLTS) and photoexcitation electron paramagnetic resonance (photo‐EPR). After irradiation, several DLTS levels, EH1, EH3, Z1/2, EH5 and EH6/7, often reported in irradiated 4H‐SiC, were observed. In irradiated freestanding films from the same wafer, the EPR signals of the carbon vacancy in the positive and negative charge states, VC+ and VC, respectively, can be observed simultaneously under illumination with light of certain photon energies. Comparing the ionization energies obtained from DLTS and photo‐EPR, we suggest that the EH6/7 (at ~EC – 1.6 eV) and EH5 (at ~EC – 1.0 eV) electron traps may be related to the single donor (+ | 0) and the double acceptor (1– | 2–) level of VC, respectively. Judging from the relative intensity of the DLTS signals, the EH6/7 level may also be contributed to by other unidentified defects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The diastereoselective photodependent isomerization equilibrium of E/Z‐1,3‐ditolyl‐5‐[3‐oxobenzofuran‐2(3H)‐ylidene]imidazolidine‐2,4‐dione ( 5 ) is reported. Both diastereomers E-5 and Z-5 are stereochemically stable in solid state but show significant photosensibility in solutions of halogenated solvent. The photoisomerization equilibrium of E/Z‐ 5 is therefore deduced from the 1H NMR profile after visible‐light irradiation of both E-5 and Z-5 samples. The results of the kinetic study, monitored by UV‐HPLC, reveal that the E/Z equilibrium is diastereoselective and photodependent, being the transformation E ? Z proceeding faster than that of Z ? E, and the E/Z ratio at the equilibrium depends on the used solvent, light source, and temperature. Both diastereomers are visible‐light photosensitive tending to coexist together in equilibrium solutions at a determined ratio, which is always in favor of the Z‐product assuming a minimum thermodynamic energy and an increased entropy of the system. Time‐dependent density functional theory calculations suggest that the photoisomerization mechanism proceeds via a conical intersection involving the first‐excited state: Upon irradiation, the E-5 isomer is excited to the S1 potential energy surface, where it relaxes through rotation of the C=C bond and reaches a conical intersection with the ground‐state potential energy surface, thus yielding the Z-5 isomer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Carbon contamination is a general problem of under‐vacuum optics submitted to high fluence. In soft X‐ray beamlines carbon deposit on optics is known to absorb and scatter radiation close to the C K‐edge (280 eV), forbidding effective measurements in this spectral region. Here the observation of strong reflectivity losses is reported related to carbon deposition at much higher energies around 1000 eV, where carbon absorptivity is small. It is shown that the observed effect can be modelled as a destructive interference from a homogeneous carbon thin film.  相似文献   

6.
The aromatic nucleophilic substitution reaction of 3,6‐dichloro‐1,2,4,5‐tetrazine (DCT) with a series of biothiols RSH: (cysteine, homocysteine, cysteinyl–glycine, N‐acetylcysteine, and glutathione) is subjected to a kinetic investigation. The reactions are studied by following spectrophotometrically the disappearance of DCT at 370 nm. In the case of an excess of N‐acetylcysteine and glutathione, clean pseudo first‐order rate constants (kobs1) are found. However, for cysteine, homocysteine and cysteinyl–glycine, two consecutive reactions are observed. The first one is the nucleophilic aromatic substitution of the chlorine by the sulfhydryl group of these biothiols (RSH) and the second one is the intramolecular and intermolecular nucleophilic aromatic substitutions of their alkylthio with the amine group of RSH to give the di‐substituted compound. Therefore, in these cases, two pseudo first‐order rate constants (kobs1 and kobs2, respectively) are found under biothiol excess. Plots of kobs1 versus free thiol concentration at constant pH are linear, with the slope (kN) independent of pH (from 6.8 to 7.4). The kinetic data analysis (Brønsted‐type plot and activation parameters) is consistent with an addition–elimination mechanism with the nucleophilic attack as the rate‐determining step. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Fischer–Tropsch (FT) synthesis is an important process in the manufacturing of hydrocarbons and oxygenated hydrocarbons from mixtures of carbon monoxide and hydrogen (syngas). The reduced iron catalyst reacts with carbon monoxide and hydrogen to form bulk Fe5C2 Hägg carbide (χ‐HC) during FT synthesis. Arguably, χ‐HC is the predominant catalyst phase present in the working iron catalyst. Deactivation of the working catalyst can be due to oxidation of χ‐HC to iron oxide, a step‐wise decarburization to cementite (θ‐Fe3C), carbon formation or sintering with accompanying loss of catalytic performance. It is therefore critical to determine the precise crystal structure of χ‐HC for the understanding of the synthesis process and for comparison with the first‐principles ab initio modelling. Here the results of high‐resolution synchrotron X‐ray powder diffraction data are reported. The atomic arrangement of χ‐HC was confirmed by Rietveld refinement and subsequent real‐space modelling of the pair distribution function (PDF) obtained from direct Fourier transformation. The Rietveld and PDF results of χ‐HC correspond well with that of a pseudo‐monoclinic phase of space group Pī [a = 11.5661 (6) Å, b = 4.5709 (1) Å, c = 5.0611 (2) Å, α = 89.990 (5)°, β = 97.753 (4)°, γ = 90.195 (4)°], where the Fe atoms are located in three distorted prismatic trigonal and one octahedral arrangement around the central C atoms. The Fe atoms are distorted from the prismatic trigonal arrangement in the monoclinic structure by the change in C atom location in the structure.  相似文献   

8.
N‐Substituted 4,4‐dimethyl‐4‐silathiane 1‐sulfimides [R = Ph ( 1 ), CF3 ( 2 )] were studied experimentally by variable temperature dynamic NMR spectroscopy. Low temperature 13C NMR spectra of the two compounds revealed the frozen ring inversion process and approximately equal content of the axial and equatorial conformers. Calculations of the 4‐silathiane derivatives 1 , 2 and the model compound [R = Me ( 3 )] as well as their carbon analogs, the similarly N‐substituted thiane 1‐sulfimides [R = Ph ( 4 ), CF3 ( 5 ), Me ( 6 )] at the DFT/B3LYP/6–311G(d,p) level in the gas phase and in chloroform solution using the PCM model at the same level of theory showed a strong dependence of the relative stability of the conformer on the solvent. The electronegative trifluoromethyl group increases the relative stability of the axial conformer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The electrode of Li‐ion batteries is required to be chemically and mechanically stable in the electrolyte environment for in situ monitoring by transmission X‐ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire‐shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X‐ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X‐ray dose is the key factor of radiation damage. For in situ TXM tomography, intermittent X‐ray exposure during image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.  相似文献   

10.
Based on first‐principles calculations, the electronic structure and the associated magnetism of carbon‐doped rutile TiO2 have been investigated in the frame of the generalized gradient approximation (GGA). We find that the carbon substitutional oxygen ions can induce a magnetic moment of about 2.0µB/C, but the carbon substitutional titanium cannot provide any magnetism. Graphics of the spin density show that the magnetism is from the structure distortion around the carbon substitutional oxygen ions in the (110) plane of primitive TiO2. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The hydrolysis of ethyl threo‐2‐(1‐adamantyl)‐3‐hydroxybutyrate ( 1 ) and the parent ester ethyl 3‐hydroxybutyrate ( 4 ) has been studied experimentally and computationally. In the hydrolysis of threo‐ester 1 with 2 M NaOH, predominantly retro‐aldol product was observed, whereas the hydrolyzed product was present in a minor amount. When the reaction is carried out under the same conditions with the parent ester ethyl 3‐hydroxybutyrate ( 4 ), hydrolyzed product is exclusively observed. The competitive pathways, namely hydrolysis and the retro‐aldol reaction for 1 and 4 were investigated using DFT calculations in the both gas and solvent phase. The calculated results in the solvent phase at B3LYP/6–31 + G* level revealed that the formation of retro‐aldol products is kinetically preferred over the hydrolysis of threo‐ester 1 in the presence of a base. However, the parent ester 4 showed that the retro‐aldol process is less favored than the hydrolysis process under similar conditions. The steric effect imposed by the bulky adamantyl group to enhance the activation barriers for the hydrolysis of the ethyl threo‐2‐(1‐adamantyl)‐3‐hydroxybutyrate ( 1 ) was further supported by the calculations performed with tert‐butyl group at the α‐carbon atom of ethyl 3‐hydroxybutyrate ( 7 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A Molecular Electron Density Theory study of the zw‐type 32CA reactions of acetonitrile oxide (NO) with two 7‐oxanorborn‐5‐en‐2‐ones (ONBs) has been performed at the DFT B3LYP/6‐31G(d) computational level. These cycloadditions proceed through one‐step mechanisms with high activation energies and present low para regio and complete syn diastereofacial selectivities. While the non‐polar character of these zw‐type 32CA reactions, which is the consequence of the insufficient electrophilic activation of ONBs, according to the analysis of the conceptual DFT reactivity indices, accounts for the high activation energies, and low para regioselectivity, NCI topological analyses at the anti/syn pairs of para TSs reveal that the steric hindrance encountered between the NO framework and the ONB side containing the carbonyl group along the anti approach mode is responsible for the complete syn diastereofacial selectivity.  相似文献   

13.
The triple‐resonant (TR) second‐order Raman scattering mechanism in graphene is re‐examined. It is shown that the magnitude of the TR contribution to the photon‐G′ mode coupling function in graphene is one order of magnitude larger than the widely accepted two‐resonant coupling. Enhancement of the order of 100 in the Raman intensity, with respect to the usual double‐resonant model, is found for the G′ band in graphene, and is expected in the related sp2‐based carbon materials, as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
4‐Alkyl‐2,2,6,6‐tetramethyl‐1,4,2,6‐oxaazadisilinanes RN[CH2Si(Me)2]2O [R = Me ( 1 ), i‐Pr ( 2 )] were synthesized by two methods which provided good yields up to 84%. Low temperature NMR study of compounds ( 1 ) and ( 2 ) revealed a frozen ring inversion with the energy barriers of 8.5 and 7.7 kcal/mol at 163 and 143 K, respectively, which is substantially lower than that for their carbon analog, N‐methylmorpholine. DFT calculations performed on the example of molecule ( 1 ) showed that N? Meax conformer to exist in the sofa conformation with the coplanar fragment C? Si? O? Si? C, and its N? Meeq conformer in a flattened chair conformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We determined, for the first time, the room temperature phonon energy related to the F2g vibration mode (ωSRS(12C) ~ 1333.2 cm–1) in a mono‐crystalline single‐isotope CVD 12C‐diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one‐micron excitation using a Nd3+:Y3Al5O12‐laser generates a nearly two‐octave spanning SRS frequency comb (~12000 cm–1) consisting of higher‐order Stokes and anti‐Stokes components. The spacing of the spectral lines was found to differ by ΔωSRS ~ 0.9 cm–1 from the comb spacing (ωSRS(natC) ~ 1332.3 cm–1) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes 12C (98.93%) and 13C (1.07%). (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
NMR and GC/MS spectroscopy of the organic extracts of the oscillatory bromate‐1,4‐cyclohexanedione reaction illustrate the presence of ring‐opening products 5‐(dibromomethylene)‐2(5H)‐furanone, (E)‐5,5,5‐tribromo‐4‐oxo‐2‐pentenoic acid, and dibromoacetic acid, particularly at elevated temperatures. The loss of a carbon atom from the six‐membered ring after ring opening led to gas formation and such a process became more vigorous at >60 °C, with the direct observation of bubbles in a stirred batch reactor. Gravimetric experiments confirm that the amount of carbon dioxide gas produced increases rapidly with reaction temperature. Parallel experiments suggest that the ring‐opening process involves the oxidation of brominated benzoquinones by bromate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The conformational behaviors of trans‐2,3‐dihalo‐1,4‐dithiane [halo = F ( 1 ), Cl ( 2 ), Br ( 3 )] and trans‐2,5‐dihalo‐1,4‐dithiane [halo = F ( 4 ), Cl ( 5 ), Br ( 6 )] have been analyzed by means of complete basis set CBS‐4, hybrid‐density functional theory (B3LYP/6‐311 + G**//B3LYP/6‐311 + G**) based methods, and natural bond orbital (NBO) interpretation. Both methods showed that the axial conformations of compounds 1–5 are more stable than their equatorial conformations but CBS‐4 resulted in an equatorial preference for compound 6 . The Gibbs free energy difference (Geq?Gax) values (i.e., ΔGeq–ax) at 298.15 K and 1 atm between the axial and equatorial conformations decrease from compound 1 to compound 2 but increase from compound 2 to compound 3 . Also, the calculated ΔGeq–ax values decrease from compound 4 to compound 6 . The NBO analysis of donor–acceptor (LP → σ*) interactions showed that the anomeric effect (AE) increase from compound 1 to compound 3 and also from compound 4 to compound 6 . On the other hand, the calculated dipole moment values between the axial and equatorial conformations [Δ(µeq?µax)] decrease from compound 1 to compound 3 . The conflict between the increase of AE and the decrease of Δ(µeq?µax) values could explain the variation of the calculated ΔGeq–ax for compounds 1–3 . The Gibbs free energy difference values between the axial and equatorial conformations (i.e., ΔGax–ax and ΔGeq–eq) of compounds 1 and 4 , 2 and 5 and also 3 and 6 have been calculated. The correlations between the AE, bond orders, pairwise steric exchange energies (PSEE), ΔGeq–ax, ΔGax–ax, ΔGeq–eq, dipole–dipole interactions, structural parameters, and conformational behaviors of compounds 1–6 have been investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The UV–Vis spectrum of 5‐(1‐butylthio)‐3H‐1,2‐dithiole‐3‐thione (1a) and that of the chromium pentacarbonyl complex of 5‐methyl‐3H‐1,2‐dithiole‐3‐thione (3) present significant changes with the solvent polarity. The two absorption bands shown by the compounds in the region above 300 nm were identified by theoretical calculations. For Compound 1a these are n→π* and →π* transitions and for Compound 3 the longest wavelength absorption corresponds to a charge transfer band and shows a remarkably negative solvatochromism. Not only has the wavelength of maximum absorption changed with the solvent but also the ratio of the absorbances at the two wavelengths. The effect of solvents was correlated with solvatochromic parameters such as π* and α. The spectrum of 5‐(1‐butylthio)‐3H‐1,2‐dithiole‐3‐one ( 2 ) was also measured in different solvents but in this case the changes observed are less significant than for the other two compounds. The spectra of 1a and 3 were also determined in the presence of anionic (SDS), cationic (CTAB), and neutral surfactants (Brig‐35) and it is shown that these compounds can be used as probes for the polarity of the binding sites of organized assemblies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Carbon contamination of optics is a serious issue in all soft X‐ray beamlines because it decreases the quality of experimental data, such as near‐edge X‐ray absorption fine structure, resonant photoemission and resonant soft X‐ray emission spectra in the carbon K‐edge region. Here an in situ method involving the use of oxygen activated by zeroth‐order synchrotron radiation was used to clean the optics in a vacuum ultraviolet and soft X‐ray undulator beamline, BL‐13A at the Photon Factory in Tsukuba, Japan. The carbon contamination of the optics was removed by exposing them to oxygen at a pressure of 10?1–10?4 Pa for 17–20 h and simultaneously irradiating them with zeroth‐order synchrotron radiation. After the cleaning, the decrease in the photon intensity in the carbon K‐edge region reduced to 2–5%. The base pressure of the beamline recovered to 10?7–10?8 Pa in one day without baking. The beamline can be used without additional commissioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号