首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact high‐speed X‐ray atomic force microscope has been developed for in situ use in normal‐incidence X‐ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X‐ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X‐ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.  相似文献   

2.
Carbon contamination of optics is a serious issue in all soft X‐ray beamlines because it decreases the quality of experimental data, such as near‐edge X‐ray absorption fine structure, resonant photoemission and resonant soft X‐ray emission spectra in the carbon K‐edge region. Here an in situ method involving the use of oxygen activated by zeroth‐order synchrotron radiation was used to clean the optics in a vacuum ultraviolet and soft X‐ray undulator beamline, BL‐13A at the Photon Factory in Tsukuba, Japan. The carbon contamination of the optics was removed by exposing them to oxygen at a pressure of 10?1–10?4 Pa for 17–20 h and simultaneously irradiating them with zeroth‐order synchrotron radiation. After the cleaning, the decrease in the photon intensity in the carbon K‐edge region reduced to 2–5%. The base pressure of the beamline recovered to 10?7–10?8 Pa in one day without baking. The beamline can be used without additional commissioning.  相似文献   

3.
This paper describes the design, construction and implementation of a relatively large controlled‐atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high‐energy X‐ray scattering techniques such as synchrotron‐based energy‐dispersive X‐ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray–Farthing–Chen Cambridge electrowinning cell, featuring molten CaCl2 as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high‐temperature environments is also discussed.  相似文献   

4.
The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium‐ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X‐ray Raman scattering spectroscopy (a non‐resonant inelastic X‐ray scattering method) was utilized together with a closed‐circle flow cell. Carbon and oxygen K‐edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue‐shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K‐edge results agree with previous soft X‐ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K‐edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.  相似文献   

5.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

6.
Speciation of copper in a copper‐rich chemical‐mechanical polishing sludge during electrokinetic treatment has been studied by in situ extended X‐ray absorption fine structure (EXAFS) and X‐ray absorption near‐edge structure (XANES) spectroscopy. The least‐squares‐fitted XANES spectra indicate that the main copper species in the sludge are Cu(OH)2 (74%), nanosize CuO (20–60 nm) (13%) and CuO (>100 nm) (13%). The average bond distance and coordination number (CN) of Cu—O are 1.96 Å and 3.5, respectively. Under electrokinetic treatment (5 V cm?1) for 120 min, about 85% of the copper is dissolved in the electrolyte, 13% of which is migrated and enriched on the cathode. Notably the copper nanoparticles in the sludge can also migrate to the cathode under the electric field. By in situ EXAFS, it is found that during the electrokinetic treatment the bond distance and CN of Cu—O are increased by 0.1 Å and 0.9, respectively.  相似文献   

7.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

8.
A new technique for the parallel collection of X‐ray reflectivity (XRR) data, compatible with monochromatic synchrotron radiation and flat substrates, is described and applied to the in situ observation of thin‐film growth. The method employs a polycapillary X‐ray optic to produce a converging fan of radiation, incident onto a sample surface, and an area detector to simultaneously collect the XRR signal over an angular range matching that of the incident fan. Factors determining the range and instrumental resolution of the technique in reciprocal space, in addition to the signal‐to‐background ratio, are described in detail. This particular implementation records ~5° in 2gθ and resolves Kiessig fringes from samples with layer thicknesses ranging from 3 to 76 nm. The value of this approach is illustrated by showing in situ XRR data obtained with 100 ms time resolution during the growth of epitaxial La0.7Sr0.3MnO3 on SrTiO3 by pulsed laser deposition at the Cornell High Energy Synchrotron Source (CHESS). Compared with prior methods for parallel XRR data collection, this is the first method that is both sample‐independent and compatible with the highly collimated, monochromatic radiation typical of third‐generation synchrotron sources. Further, this technique can be readily adapted for use with laboratory‐based sources.  相似文献   

9.
An end‐station for X‐ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end‐station is dedicated to the study of shallow core electronic excitations using non‐resonant inelastic X‐ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X‐ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end‐station provides an unprecedented instrument for X‐ray Raman scattering, which is a spectroscopic tool of great interest for the study of low‐energy X‐ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.  相似文献   

10.
A high‐temperature furnace with an induction heater coil has been designed and constructed for in situ X‐ray spectroscopic experiments under controlled atmospheric conditions and temperatures up to 3275 K. The multi‐purpose chamber design allows working in backscattering and normal fluorescence mode for synchrotron X‐ray absorption and emission spectroscopy. The use of the furnace is demonstrated in a study of the in situ formation of Cr oxide between 1823 K and 2023 K at logPO2 values between ?10.0 and ?11.3 using X‐ray absorption near‐edge spectroscopy. The set‐up is of particular interest for studying liquid metals, alloys and other electrically conductive materials under extreme conditions.  相似文献   

11.
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic‐scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high‐energy X‐ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X‐ray path while implementing low‐Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X‐ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high‐energy X‐ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic‐scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.  相似文献   

12.
Hydrothermal formation of tobermorite from a pre‐cured cake has been investigated by transmission X‐ray diffraction (XRD) using high‐energy X‐rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide‐angle X‐ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non‐crystalline C–S–H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.  相似文献   

13.
Combined small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime (~1 nm to ~1 µm). A set‐up to apply this technique at high X‐ray energies (E > 50 keV) has been developed. Hard X‐rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X‐ray energies (8–20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 Å?1) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro‐ and nano‐structured materials, and (iii) utilization of complex sample environments involving thick X‐ray windows and/or samples that can be penetrated only by high‐energy X‐rays. Using the reported set‐up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.  相似文献   

14.
X‐ray absorption near‐edge structure (XANES) and X‐ray photoelectron spectroscopy (XPS) of Nd‐doped phosphate glasses have been studied before and after gamma irradiation. The intensity and the location of the white line peak of the L3‐edge XANES of Nd are found to be dependent on the ratio O/Nd in the glass matrix. Gamma irradiation changes the elemental concentration of atoms in the glass matrix, which affects the peak intensity of the white line due to changes in the covalence of the chemical bonds with Nd atoms in the glass (structural changes). Sharpening of the Nd 3d5/2 peak profile in XPS spectra indicates a deficiency of oxygen in the glasses after gamma irradiation, which is supported by energy‐dispersive X‐ray spectroscopy measurements. The ratio of non‐bridging oxygen to total oxygen in the glass after gamma radiation has been found to be correlated to the concentration of defects in the glass samples, which are responsible for its radiation resistance as well as for its coloration.  相似文献   

15.
A novel X‐ray Bragg optics is proposed for variable‐magnification of an X‐ray beam. This X‐ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X‐ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X‐ray diffraction. The feasibility of the variable‐magnification X‐ray Bragg optics was verified at the vertical‐wiggler beamline BL‐14B of the Photon Factory. For X‐ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M≥ 1.0), X‐ray images of a nylon mesh were observed with an air‐cooled X‐ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption‐contrast but also edge‐contrast due to Fresnel diffraction was observed in the magnified images.  相似文献   

16.
17.
A novel set‐up has been designed and used for synchrotron radiation X‐ray high‐resolution powder diffraction (SR‐HRPD) in transmission geometry (spinning capillary) for in situ solid–gas reactions and processes in an isobaric and isothermal environment. The pressure and temperature of the sample are controlled from 10?3 to 1000 mbar and from 80 to 1000 K, respectively. To test the capacities of this novel experimental set‐up, structure deformation in the porous material zeolitic imidazole framework (ZIF‐8) by gas adsorption at cryogenic temperature has been studied under isothermal and isobaric conditions. Direct structure deformations by the adsorption of Ar and N2 gases have been observed in situ, demonstrating that this set‐up is perfectly suitable for direct structural analysis under in operando conditions. The presented results prove the feasibility of this novel experimental station for the characterization in real time of solid–gas reactions and other solid–gas processes by SR‐HRPD.  相似文献   

18.
Beryllium, being one of the most transparent materials to X‐ray radiation, has become the material of choice for X‐ray optics instrumentation at synchrotron radiation sources and free‐electron laser facilities. However, there are concerns due to its high toxicity and, consequently, there is a need for special safety regulations. The authors propose to apply protective coatings in order to seal off beryllium from the ambient atmosphere, thus preventing degradation processes providing additional protection for users and prolonging the service time of the optical elements. This paper presents durability test results for Be windows coated with atomic‐layer‐deposition alumina layers run at the European Synchrotron Radiation Facility. Expositions were performed under monochromatic, pink and white beams, establishing conditions that the samples could tolerate without radiation damage. X‐ray treatment was implemented in various environments, i.e. vacuum, helium, nitrogen, argon and dry air at different pressures. Post‐process analysis revealed their efficiency for monochromatic and pink beams.  相似文献   

19.
20.
Real‐time processing of X‐ray image data acquired at synchrotron radiation facilities allows for smart high‐speed experiments. This includes workflows covering parameterized and image‐based feedback‐driven control up to the final storage of raw and processed data. Nevertheless, there is presently no system that supports an efficient construction of such experiment workflows in a scalable way. Thus, here an architecture based on a high‐level control system that manages low‐level data acquisition, data processing and device changes is described. This system is suitable for routine as well as prototypical experiments, and provides specialized building blocks to conduct four‐dimensional in situ, in vivo and operando tomography and laminography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号