首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a stereochemically pure concave tribenzotriquinacene receptor ( 7 ) for C60 fullerene, possessing C3 point group symmetry, by threefold condensation of C2‐symmetric 1,2‐diketone synthons ( 5 ) and a hexaaminotribenzotriquinacene core ( 6 ) is described. The chiral diketone was synthesized in a five‐step reaction sequence starting from C2h‐symmetric 2,6‐di‐tert‐butylanthracene. The highly diastereo‐discriminating Diels–Alder reaction of 2,6‐di‐tert‐butylanthracene with fumaric acid di(?)menthyl ester, catalyzed by aluminium chloride, is the relevant stereochemistry introducing step. The structure of the fullerene receptor was verified by 1H and 13C NMR spectroscopy, mass spectrometry and single crystal X‐ray diffraction. VCD and ECD spectra were recorded, which were corroborated by ab initio DFT calculations, establishing the chiral nature of 7 with about 99.7 % ee, based on the ee (99.9 %) of the chiral synthon ( 1 ). The absolute configuration of 7 could thus be established as all‐S [(2S,7S,16S,21S,30S,35S)‐( 7 )]. Spectroscopic titration experiments reveal that the host forms 1:1 complexes with either pure fullerene (C60) or fullerene derivatives, such as rotor 1′‐(4‐nitrophenyl)‐3′‐(4‐N,N‐dimethylaminophenyl)‐pyrazolino[4′,5′:1,2][60]fullerene ( R ). The complex stability constants of the complexes dissolved in CHCl3/CS2 (1:1 vol. %) are K([ C60 ? 7 ])=319(±156) M ?1 and K([ R ? 7 ])=110(±50) M ?1. With molecular dynamics simulations using a first‐principles parameterized force field the asymmetry of the rotational potential for [ R ? 7 ] was shown, demonstrating the potential suitability of receptor 7 to act as a stator in a unidirectionally operating nanoratchet.  相似文献   

2.
Tribenzotriquinacene (TBTQ) is a bowl‐shaped molecule that has been widely used as a molecular building block in supramolecular and materials chemistry. Especially C3‐symmetric threefold‐substituted TBTQs are interesting for these purposes. Until now a general and selective synthetic approach to those C3‐symmetric products was lacking, mainly because the typically used electrophilic aromatic substitution reactions of the parent TBTQ hydrocarbons produce predominantly the C1 isomer over the C3 isomer (3:1 statistical ratio). Herein we introduce a threefold borylation of TBTQ with the C3 isomer as the main product (2.6:1 C3/C1 ratio). The borylated TBTQ can be converted in good yields into other C3‐symmetric TBTQs, thus allowing straightforward synthetic access to new building blocks for supramolecular and materials chemistry.  相似文献   

3.
A cyclophane is reported incorporating two units of a heptagon‐containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa‐peri‐hexabenzocoronene (HBC) moiety (hept‐HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven‐membered rings within extended PAH frameworks. The saddle curvature of the hept‐HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m ?1 and Ka=(6.49±0.23)×103 m ?1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

4.
New Ti and Zr complexes that bear imine–phenoxy chelate ligands, [{2,4‐di‐tBu‐6‐(RCH=N)‐C6H4O}2MCl2] ( 1 : M=Ti, R=Ph; 2 : M=Ti, R=C6F5; 3 : M=Zr, R=Ph; 4 : M=Zr, R=C6F5), were synthesized and investigated as precatalysts for ethylene polymerization. 1H NMR spectroscopy suggests that these complexes exist as mixtures of structural isomers. X‐ray crystallographic analysis of the adduct 1 ?HCl reveals that it exists as a zwitterionic complex in which H and Cl are situated in close proximity to one of the imine nitrogen atoms and the central metal, respectively. The X‐ray molecular structure also indicates that one imine phenoxy group with the syn C?N configuration functions as a bidentate ligand, whereas the other, of the anti C?N form, acts as a monodentate phenoxy ligand. Although Zr complexes 3 and 4 with methylaluminoxane (MAO) or [Ph3C]+[B(C6F5)4]?/AliBu3 displayed moderate activity, the Ti congeners 1 and 2 , in association with an appropriate activator, catalyzed ethylene polymerization with high efficiency. Upon activation with MAO at 25 °C, 2 displayed a very high activity of 19900 (kg PE) (mol Ti)?1 h?1, which is comparable to that for [Cp2TiCl2] and [Cp2ZrCl2], although increasing the polymerization temperature did result in a marked decrease in activity. Complex 2 contains a C6F5 group on the imine nitrogen atom and mediated nonliving‐type polymerization, unlike the corresponding salicylaldimine‐type complex. Conversely, with [Ph3C]+[B(C6F5)4]?/AliBu3 activation, 1 exhibited enhanced activity as the temperature was increased (25–75 °C) and maintained very high activity for 60 min at 75 °C (18740 (kg PE) (mol Ti)?1 h?1). 1H NMR spectroscopic studies of the reaction suggest that this thermally robust catalyst system generates an amine–phenoxy complex as the catalytically active species. The combinations 1 /[Ph3C]+[B(C6F5)4]?/AliBu3 and 2 /MAO also worked as high‐activity catalysts for the copolymerization of ethylene and propylene.  相似文献   

5.
The first experimental evidence that fullerenes react with alkali‐metal trichloroacetates through a nucleophilic addition‐substitution route, yielding dichloromethylenefullerenes as the final products, is reported. The intermediates, C60(CCl3)? and C70(CCl3)? anions, have been isolated in their protonated forms as ortho‐C60(CCl3)H, as well as three ortho and one para isomer of C70(CCl3)H. The structures were unambiguously determined by means of 1H, 13C, and 1H–13C HMBC NMR spectroscopy along with UV/Vis spectroscopy. The observed regiochemistry was analyzed with the aid of quantum chemical calculations. Conversion of the protonated compounds into the [6,6]‐closed C60/70(CCl2) cycloadducts under basic conditions can be effected only for the ortho isomers, whereas para‐C70(CCl3)H decomposes back into pristine C70.  相似文献   

6.
Pulsed gradient spin‐echo (PGSE) diffusion characteristics for a) the new [brucinium][X] salts 6 a – f [ a : X=BF4?; b : X=PF6?; c : X=MeSO3?, d : X=CF3SO3?; e : X=BArF?; f : X=PtCl3(C2H4)?], b) 4‐tert‐butyl‐N‐benzyl analogue, 7 and c) the aryl carbocations (p‐R‐C6H4)2CH 9 a (R=CH3O) and 9 b (R=(CH3)2N), (p‐CH3O‐C6H4)xCPh3?x+ 10 a – c (x=1–3, respectively) and (p‐R‐C6H4)3C+ 11 (R=(CH3)2N) and 12 (R=H) all in several different solvents, are reported. The solvent dependence suggests strong ion pairing in CDCl3, intermediate ion pairing in CD2Cl2 and little ion pairing in [D6]acetone. 1H, 19F HOESY NMR spectra (HOESY: heteronuclear Overhauser effect spectroscopy) for 6 and 7 reveal a specific approach of the anion with respect to the brucinium cation plus subtle changes, which are related to the anion itself. Further, for carbocations 9 – 12 , (all as BF4? salts) based on the NOE results, one finds marked changes in the relative positions of the BF4? anion. In these aryl cationic species the anion can be located either a) very close to the carbonium ion carbon b) in an intermediate position or c) proximate to the N or O atom of the p‐substituent and remote from the formally positive C atom. This represents the first example of such a positional dependence of an anion on the structure of the carbocation. DFT calculations support the experimental HOESY results. The solid‐state structures for 6 c and the novel Zeise's salt derivative, [brucinium][PtCl3(C2H4)], 6 f , are reported. Analysis of 195Pt NMR and other NMR measurements suggest that the η2‐C2H4 bonding to the platinum centre in 6 f is very similar to that found in K[PtCl3(C2H4)]. Field dependent T1 measurements on [brucinium][PtCl3(C2H4)] and K[PtCl3(C2H4)], are reported and suggested to be useful in recognizing aggregation effects.  相似文献   

7.
Enantiomerically pure tribenzotriquinacenes (TBTQs) bearing two monofunctionalized aromatic nuclei were synthesized for the first time and their optical properties and absolute configuration determined. A remarkably regioselective bis‐formylation of the fully bridgehead methylated parent TBTQ hydrocarbon with MeOCHCl2/TiCl4 afforded a mixture of two Cs‐symmetrical (achiral) difunctionalized derivatives together with one C1‐symmetrical (chiral) isomer. Reduction and subsequent column chromatography furnished the three respective benzylic TBTQ dialcohols. Optical resolution of the racemic 2,6‐bis(hydroxymethyl) derivative was achieved via the diastereomeric (R)‐1,1′‐bi‐2‐naphthol ethers and the absolute configuration of the enantiomers was determined by CD exciton model analysis. The electronic circular dichroism (ECD) spectra and the specific rotation of the enantiomers were found to agree with the results of DFT calculations. Among the Cs‐symmetrical isomers, the “proximal” 2,11‐dialdehyde and the corresponding benzylic dialcohol were identified by 2D NMR spectroscopy and X‐ray crystallographic analysis, respectively, and used as the starting point for the synthesis of several novel dithiametacyclophanes. These include the first “dimeric” tribenzotriquinacene‐based cyclophanes bearing the bowls of the two TBTQ units attached to each other in a syn (concave–concave) or anti (convex–concave) configuration. The usefulness of such thiacyclophanes as fluorescent chemosensors for different metal ions is also demonstrated.  相似文献   

8.
A number of three‐fold C3v‐symmetrical tribenzotriquinacene (TBTQ) cavitands were synthesized by a “metamorphosis‐to‐half” strategy, employing six‐fold etherification reactions between the hexakis(chloromethyl)‐TBTQ intermediate 2 a and various 5‐functionalized resorcinols. X‐ray structure analyses of single crystals of the cavitands revealed limited rotational flexibility of the resorcinol bridging units, which enables an apical, nearly co‐axial orientation of the three functional groups and, as a consequence, the construction of nanoscale cage‐like molecules via covalent or coordination bonding. On this basis, two TBTQ‐based hemicryptophanes were prepared from the TBTQ cavitands via covalent bond formation in good yields. A dumbbell‐shaped TBTQ‐based metallo‐cryptophane was also synthesized in 34 % yield by a solvothermal reaction between cadmium nitrate and two equivalents of the TBTQ‐cavitand triacid, as confirmed by single‐crystal X‐ray diffraction and MALDI‐ToF mass spectrometry.  相似文献   

9.
β,β‐(1,4‐Dithiino)subporphyrin dimers 7‐syn and 7‐anti were synthesized by the nucleophilic aromatic substitution reaction of 2‐bromo‐3‐(4‐methoxyphenylsulfonyl)subporphyrin 4 with 2,3‐dimercaptosubporphyrin 5 under basic conditions followed by axial arylation. Additions of C60 or C70 to a dilute solution of 7‐anti (ca. 10?6 m ) in toluene did not cause appreciable UV/Vis spectral changes, while similar additions to a concentrated solution (ca. 10?3 m ) resulted in precipitation of complexes. In contrast, dimer 7‐syn captured C60 and C70 in different complexation stoichiometries in toluene; a 1:1 manner and a 2:1 manner, respectively, with large association constants; Ka=(1.9±0.2)×106 m ?1 for C60@ 7‐syn , and K1=(1.6±0.5)×106 and K2=(1.8±0.9)×105 m ?1 for C70@( 7‐syn )2. These association constants are the largest for fullerenes‐capture by bowl‐shaped molecules reported so far. The structures of C60@ 7‐anti , C70@ 7‐anti , C60@ 7‐syn , and C70@ 7‐syn have been determined by single‐crystal X‐ray diffraction analysis.  相似文献   

10.
A series of C3i‐symmetric bicapped trigonal antiprismatic Cd8 cages [2X@Cd8L6(H2O)6] ? n Y ? solvents (X=Cl?, Y=NO3?, n=2: MOCC‐4 ; X=Br?, Y=NO3?, n=2: MOCC‐5 ; X=NO3?, Y=NO3?, n=2: MOCC‐6 ; X=NO3?, Y=BF4?, n=2: MOCC‐7 ; X=NO3?, Y=ClO4?, n=2: MOCC‐8 ; X=CO32?, n=0: MOCC‐9 ), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO32? template for MOCC‐9 was generated in situ by two‐step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC‐8 was carried out and showed anion‐size selectivity. All of the cage‐like compounds emit strong luminescence at room temperature.  相似文献   

11.
Palladacyclic compounds [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] (R = Et, iPr, 2,6‐iPr2C6H3; N? N = bpy = 2,2′‐bipyridine, or 1,4‐(o,o′‐dialkylaryl)‐1,4‐diazabuta‐1,3‐dienes; [X]? = [BF4]? or [PF6]?) were synthesized from the dimers [{Pd(C6H4(C6H5C?O)C?N? R)(μ‐Cl)}2] and N? N ligands. Their interionic structure in CD2Cl2 was determined by means of 19F,1H‐HOESY experiments and compared with that in the solid state derived from X‐ray single‐crystal studies. [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] complexes were found to copolymerize CO and p‐methylstyrene affording syndiotactic or isotactic copolymers when bpy or 1,4‐(o,o′‐dimethylaryl)‐1,4‐diazabuta‐1,3‐dienes were used, respectively. The reactions with CO and p‐methylstyrene of the bpy derivatives were investigated. Two intermediates derived from a single and a double insertion of CO into the Pd? C bonds were isolated and completely characterized in solution.  相似文献   

12.
Ten [C8C1Im]+ (1‐methyl‐3‐octylimidazolium)‐based ionic liquids with anions Cl?, Br?, I?, [NO3]?, [BF4]?, [TfO]?, [PF6]?, [Tf2N]?, [Pf2N]?, and [FAP]? (TfO=trifluoromethylsulfonate, Tf2N=bis(trifluoromethylsulfonyl)imide, Pf2N=bis(pentafluoroethylsulfonyl)imide, FAP=tris(pentafluoroethyl)trifluorophosphate) and two [C8C1C1Im]+ (1,2‐dimethyl‐3‐octylimidazolium)‐based ionic liquids with anions Br? and [Tf2N]? were investigated by using X‐ray photoelectron spectroscopy (XPS), NMR spectroscopy and theoretical calculations. While 1H NMR spectroscopy is found to probe very specifically the strongest hydrogen‐bond interaction between the hydrogen attached to the C2 position and the anion, a comparative XPS study provides first direct experimental evidence for cation–anion charge‐transfer phenomena in ionic liquids as a function of the ionic liquid’s anion. These charge‐transfer effects are found to be surprisingly similar for [C8C1Im]+ and [C8C1C1Im]+ salts of the same anion, which in combination with theoretical calculations leads to the conclusion that hydrogen bonding and charge transfer occur independently from each other, but are both more pronounced for small and more strongly coordinating anions, and are greatly reduced in the case of large and weakly coordinating anions.  相似文献   

13.
10α,20α‐Bis(4‐nitrophenyl)calix[4]pyrrole ( 1 ) forms 1:1 complexes with anions of selected aromatic hydroxy acids in which the host orientation within the guest is controlled by a change in the pH value. Some bis‐anionic guests, including those obtained from 4‐hydroxybenzoic acid, 1,4‐ and 1,3‐benzenedicarboxylic acids, induce the self‐assembly of molecular capsules involving two molecules of the receptor. 1H NMR data and solid‐state structures of the 1:1 complex of 1 with p‐C6H4(COOH)(COO?)+NMe4 and the 2:1 capsule [( 1 )2m‐C6H4(COO?)2(+NMe4)2] provide structural details in solution and in the solid state.  相似文献   

14.
The reduction of fullerene C60 by zinc dust in the presence of crystal violet cations (CV+) yielded a deep‐blue solution, from which crystals of (CV+)(C60.?) ? 0.5 C6H4Cl2 ( 1 ) were obtained by slow mixing with n‐hexane. The salt contained isolated, closely packed zigzagged chains that were composed of C60.? radical anions with a uniform interfullerene center‐to‐center distance of 9.98 Å. In spite of the close proximity of the fullerenes, they did not dimerize, owing to spatial separation by the phenyl substituents of CV+. The room‐temperature conductivity of compound 1 was 3×10?2 S cm?1 along the fullerene chains. The salt exhibited semiconducting behavior, with an activation energy of Ea=167 meV. Spins localized on C60.? were antiferromagnetically coupled within the fullerene chains, with a Weiss temperature of ?19 K without long‐range magnetic ordering down to 1.9 K.  相似文献   

15.
We report here for the first time a cocrystal of the so‐called neutral calix[4]tube, which is two tail‐to‐tail‐arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2‐(thiophen‐2‐yl)‐1,3‐benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene–2‐(thiophen‐2‐yl)‐1,3‐benzothiazole–dimethyl sulfoxide–water (1/1/2/2), 3Na+·C36H30O122?·C36H31O12?·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host–guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z′ (one with Z′ = 8 and two with Z′ = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z′ = 2 revealed that Z′ increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high‐Z′ packing polymorphs of simple molecules, such as the target benzothiazole.  相似文献   

16.
(Cyclo­hexyl­methyl­oxy­methyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H25N3O+·2Cl?, and (4‐bromo­benzyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H18BrN3O+·2Cl?, are model compounds with different biological activities for evaluation of the hist­amine H3‐receptor activation mechanism. Both title compounds occur in almost similar extended conformations.  相似文献   

17.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

18.
Reactions between the arachno‐6,9‐C2B8H14 ( 1 ) dicarbaborane and acyl chlorides, RCOCl ( 2 ), are subject to stereocontrol that completely changes the nature of the reaction products. While most chlorides produce the 8‐R‐nido‐7,8,9‐C3B8H11 ( 3 ) tricarbollides (by skeletal alkylcarbonation=SAC), bulky RCOCls ( 2 ; where R=1‐adamantyl, 2 a ; 1‐mesityl, 2 b ; 9‐anthranyl, 2 c ; 1‐naphthyl, 2 d ) in 1,2‐dichloroethane (DCE) in the presence of triethylamine at 40–60 °C gave a series of entirely different 1‐R‐2‐CH3closo‐1,6‐C2B8H8 ( 4 ) dicarbaboranes upon acidification with conc. H2SO4 (by exosleletal alkylmehylation=EAM). Both types of reactions seem to proceed via a common [8‐R‐nido‐7,8,9‐C3B8H10]? ( 3? ) anion which in the EAM case is unstable because of steric crowd and undergoes rearrangement via the isomeric [R‐nido‐7,8,10‐C3B8H10]? tricarbollide structures which, on protonation, undergo reductive extraction of one CH vertex to generate the 2‐CH3 substituent in structure 4 .  相似文献   

19.
An imidazolium‐modified hexa‐peri‐hexabenzocoronene derivative (HBC‐C11‐MIM[Cl?]) was designed and synthesized as a stabilizer to fabricate reduced graphene oxide (RGO). The resulting RGO/HBC‐C11‐MIM[Cl?] hybrid shows excellent dispersivity (5.0 mg mL?1) and stability in water. RGO/HBC‐C11‐MIM[Cl?] was comprehensively characterized by using atomic force microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, thus revealing that one HBC‐C11‐MIM[Cl?] group can stabilize about 178 carbon atoms on the graphene sheets. The obtained hybrid film exhibits a high conductivity of 286 S m?1. Furthermore, the HBC‐C11‐MIM[Cl?]‐modified RGO sheets can be readily dispersed in polar organic solvents upon exchange of the hydrophilic Cl? ions for hydrophobic bis(trifluoromethylsulfonyl) amide (NTf2?) ions.  相似文献   

20.
The reactions of unsymmetric phosphorus ylides of the type [Ph2P(CH2)nPPh2?C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with C60 and M(dba)2 (M = Pd or Pt; dba = dibenzylideneacetone) are reported. Based on the various coordination modes of these ylides in complexation, the following new Pd/Pt–cyclopropa[60]fullerene complexes were obtained: P,C‐coordinated [(η2‐C60)Pd(κ2‐Y1)] ( 1 ) and [(η2‐C60)Pt(κ2‐Y1)] ( 2 ) complexes and P‐coordinated [(η2‐C60)Pd(Y2)2] ( 3 ) and [(η2‐C60)Pt(Y2)2] ( 4 ) complexes. These compounds were characterized using Fourier transform infrared, UV–visible and NMR (1H, 13C and 31P) spectroscopies and scanning electron microscopy. Furthermore, cytotoxicity studies showed that nanoparticles of these complexes can be used as non‐toxic labels for cellular imaging application. Also energy decomposition analysis results revealed that the percentage contribution of ΔEelec in total interaction energy is considerably larger than that of ΔEorb. Thus, in all complexes the (η2‐C60)M? (Y1) bond is considerably more electrostatic in nature than the (η2‐C60)? M(Y1) bond. Finally, by application of the Taguchi method for optimization of parameters in Suzuki–Miyaura reaction, the catalytic activity of Pd complexes 1 and 3 was investigated in the cross‐coupling reaction of various aryl chlorides with phenylboronic acid. According to analysis of variance results, solvent has the highest F value and it has high contribution percentage (36.75%) to the yield of Suzuki–Miyaura reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号