首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An extended version of the isotropic k–ε model is proposed that accounts for the distinct effects of low‐Reynolds number (LRN) and wall proximity. It incorporates a near‐wall correction term to amplify the level of dissipation in nonequilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and the Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Comparisons indicate that the present model is a significant improvement over the standard eddy viscosity formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical simulation of some non-Newtonian effects in wall and wall-free turbulent flows, such as drag reduction in pipe flows or the decrease in transverse normal Reynolds stresses, has been attempted in the past with a limited degree of success on the basis of modified wall functions applied to traditional turbulence models (kε), rather than through more realistic rheological constitutive equations. In this work, it is qualitatively shown that if the viscosity function of a generalised Newtonian fluid is assumed to depend on the third invariant of the rate of deformation tensor, there is an increase of the viscous diffusion terms, but especially, of the dissipation of turbulence kinetic energy by a factor equal to the Trouton ratio of the fluid, divided by the Trouton ratio of the solvent, thus indicating a possible way to improve rheological–turbulence modelling.  相似文献   

4.
In order to understand the effects of the wall permeability on turbulence near a porous wall, flow field measurements are carried out for turbulent flows in a channel with a porous bottom wall by a two-component particle image velocimetry (PIV) system. The porous media used are three kinds of foamed ceramics which have almost the same porosity (0.8) but different permeability. It is confirmed that the flow becomes more turbulent over the porous wall and tends to be turbulent even at the bulk Reynolds number of Reb=1300 in the most permeable wall case tested. Corresponding to laminar to turbulent transition, the magnitude of the slip velocity on the porous wall is found to increase drastically in a narrow range of the Reynolds number. To discuss the effects of the wall roughness and the wall permeability, detailed discussions are made of zero-plane displacement and equivalent wall roughness for porous media. The results clearly indicate that the turbulence is induced by not only the wall roughness but the wall permeability. The measurements have also revealed that as Reb or the wall permeability increases, the wall normal fluctuating velocity near the porous wall is enhanced due to the effects of the wall permeability. This leads to the increase of the turbulent shear stress resulting in higher friction factors of turbulence over porous walls.  相似文献   

5.
A wall‐distance free k–ε turbulence model is developed that accounts for the near‐wall and low Reynolds number effects emanating from the physical requirements. The model coefficients/functions depend non‐linearly on both the strain rate and vorticity invariants. Included diffusion terms and modified Cε(1,2) coefficients amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results.  相似文献   

7.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder1 and followers2,3,4,5. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterised by Kolmogorov microscales. According t o this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become “Kolmogorov” eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As a n example, the concept is incorporated in the standard κ - εmodel which is then applied t o channel and boundary layer flows. Using appropriate boundary conditions (based on Kolmogorov behaviour of near-wall turbulence), there is no need for any wall-modification to the κ - ε equations (including model constants). Results compare very well with the DNS and experimental data.  相似文献   

9.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
A fully-implicit algorithm is developed for the two-dimensional, compressible, Favre-averaged Navier-Stokes equations. It incorporates the standard k-? turbulence model of Launder and Spalding and the low Reynolds number correction of Chien. The equations are solved using an unstructured grid of triangles with the flow variables stored at the centroids of the cells. A generalization of wall functions including pressure gradient effects is implemented to solve the near-wall region for turbulent flows using a separate algorithm and a hybrid grid. The inviscid fluxes are obtained from Roe's flux difference split method. Linear reconstruction of the flow variables to the cell faces provides second-order spatial accuracy. Turbulent and viscous stresses as well as heat transfer are obtained from a discrete representation of Gauss's theorem. Interpolation of the flow variables to the nodes is achieved using a second-order accurate method. Temporal discretization employs Euler, Trapezoidal or 3-Point Backward differencing. An incomplete LU factorization of the Jacobian matrix is implemented as a preconditioning method. The accuracy of the code and the efficiency of the solution strategy are presented for three test cases: a supersonic turbulent mixing layer, a supersonic laminar compression corner and a supersonic turbulent compression corner.  相似文献   

11.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents for the simple flow over a flat plate the near‐wall profiles of mean flow and turbulence quantities determined with seven eddy‐viscosity turbulence models: the one‐equation turbulence models of Menter and Spalart & Allmaras; the k‐ω two‐equation model proposed by Wilcox and its TNT, BSL and SST variants and the $k-\sqrt{k}L$ two‐equation model. The results are obtained at several Reynolds numbers ranging from 107 to 2.5 × 109. Sets of nine geometrically similar Cartesian grids are adopted to demonstrate that the numerical uncertainty of the finest grid predictions is negligible. The profiles obtained numerically have relevance for the application of so‐called ‘wall function’ boundary conditions. Such wall functions refer to assumptions about the flow in the viscous sublayer and the ‘log law’ region. It turns out that these assumptions are not always satisfied by our results, which are obtained by computing the flow with full near‐wall resolution. In particular, the solution in the ‘log‐law’ region is dependent on the turbulence model and on the Reynolds number, which is a disconcerting result for those who apply wall functions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope (J. Fluid Mech., 72 , 331–340 (1975)) was the first to introduce this kind of constitutive relation to turbulence modelling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k–ϵ eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown encouraging success in modelling complex turbulent flows.  相似文献   

14.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

15.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

16.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

17.
A calculation method has been developed and used to represent flows downstream of plane symmetric expansions with dimensions and velocities encompassing laminar and turbulent flows. Except for very low Reynolds numbers, the flows are time‐dependent and asymmetric and the calculated results are appraised first in relation to published measurements of laminar flows and then to new measurements obtained at a Reynolds number of 26 500. The time‐dependent laminar simulations indicate that the critical Reynolds numbers are predicted with excellent accuracy for different expansion ratios and the details of the asymmetric velocity profiles are in good agreement with experimental measurements. The laminar flow calculations also show that increasing the thickness of the separating boundary layer leads to longer regions of separation and no dominant frequency for Reynolds numbers up to those at which the third separation region was observed. The turbulent flow simulations made use of the k–ε turbulence model and provided a satisfactory representation of measurements, except in regions close to the wall and within the recirculation regions. Also, the longer reattachment length was underestimated. Limitations are discussed in relation to these and higher‐order assumptions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The elliptic blending approach is used in order to modify an Explicit Algebraic Reynolds Stress Model so as to reproduce the correct near wall behaviour of the turbulent stresses. The anisotropy stress tensor is expressed as a linear combination of tensor bases whose coefficients are sensitised to the non-local wall-blocking effect through the elliptic blending parameter γ. This parameter is obtained from a separate elliptic equation. The model does not use the distance from the wall thus it can be easily applied to complex geometries. It is validated against detailed DNS data for mean and turbulence quantities for the case of flow and heat transfer between parallel flat plates at three Reynolds numbers as well as against experimental data for the flow in a backward facing step at Re H = 28,000. The comparison with DNS results or experiments is quite satisfactory and shows the validity of the approach.  相似文献   

19.
The applicability of a finite element-differential method to the computation of steady two-dimensional low-speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen for the Reynolds shear stress and turbulent heat flux is the K-? two-equation model. Calculations are extended up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A number of transformations are carried out and the assumed solutions at a longitudinal station are represented by complete cubic spline functions. In essence, the method converts the governing partial differential equations into a system of ordinary differential equations by a weighted residuals method and invokes an ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy and applicability of the k-? turbulence model are examined by comparing results of the computations with experimental data. The agreement is very good.  相似文献   

20.
We present a generalised treatment of the wall boundary conditions for RANS computation of turbulent flows and heat transfer. The method blends the integration up to the wall (ItW) with the generalised wall functions (GWF) that include non-equilibrium effects. Wall boundary condition can thus be defined irrespective of whether the wall-nearest grid point lies within the viscous sublayer, in the buffer zone, or in the fully turbulent region. The computations with fine and coarse meshes of a steady and pulsating flow in a plane channel, in flow behind a backward-facing step and in a round impinging jet using the proposed compound wall treatment (CWT) are all in satisfactory agreement with the available experiments and DNS data. The method is recommended for computations of industrial flows in complex domains where it is difficult to generate a computational grid that will satisfy a priori either the ItW or WF prerequisites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号