首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This investigation pursues the study of Hall and ion‐slip effects on steady three‐dimensional flow of an incompressible second grade fluid. The partial differential equations are reduced to ordinary differential equations by using similarity variables. The resulting problems are solved by employing homotopy analysis method (HAM). The convergence of derived solutions is ensured. The influence of different physical parameters on the dimensionless velocities is examined by sketching plots. Variation of skin friction coefficients for different involved parameters is seen through tabulated values. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The present investigation deals with the three‐dimensional flow of an Oldroyd‐B fluid over a stretching surface. The governing equations for the three‐dimensional flow are developed. Similarity transformations are invoked for the conversion of nonlinear partial differential equations into the coupled system of ordinary differential equations. Computations for the series solution are presented through implementation of homotopy analysis method. The salient features of the involved parameters have been pointed out. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field.The lower sheet is considered to be a stret...  相似文献   

5.
This paper looks at the unsteady three‐dimensional MHD flow of an elastico‐viscous fluid over a stretching surface. The analysis of mass transfer is also analyzed. The governing boundary layer equations are reduced into partial differential equations with three dependent variables through similarity transformations. The transformed system of equations is solved analytically by employing homotopy analysis method (HAM). Plots for various interesting parameters are presented and discussed. Numerical data for surface shear stresses and surface mass transfer in steady case are also tabulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The unsteady MHD boundary layer flow of a micropolar fluid near the forward stagnation point of a two dimensional plane surface is investigated by using similarity transformations. The transformed nonlinear differential equations are solved by an analytic method, namely homotopy analysis method (HAM). The solution is valid for all values of time. The effect of MHD and porous medium, non dimensional velocity and the microrotation are presented graphically and discussed. The coefficient of skin friction is also presented graphically.  相似文献   

7.
This study describes the influence of mass transfer on the steady two‐dimensional magnetohydrodynamic boundary layer flow of a Jeffery fluid bounded by a stretching sheet. A uniform magnetic field in the presence of chemical reaction is applied. The arising nonlinear partial differential equations are reduced to nonlinear ordinary differential equations by similarity variables. Similar solutions of velocity and concentration fields are derived by a homotopy analysis method. The values of surface mass transfer and gradient of mass transfer are also tabulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Some properties of unsteady unidirectional flows of a fluid of second grade are considered for flows produced by the sudden application of a constant pressure gradient or by the impulsive motion of one or two boundaries. Exact analytical solutions for these flows are obtained and the results are compared with those of a Newtonian fluid. It is found that the stress at the initial time on the stationary boundary for flows generated by the impulsive motion of a boundary is infinite for a Newtonian fluid and is finite for a second grade fluid. Furthermore, it is shown that initially the stress on the stationary boundary, for flows started from rest by sudden application of a constant pressure gradient is zero for a Newtonian fluid and is not zero for a fluid of second grade. The required time to attain the asymptotic value of a second grade fluid is longer than that for a Newtonian fluid. It should be mentioned that the expressions for the flow properties, such as velocity, obtained by the Laplace transform method are exactly the same as the ones obtained for the Couette and Poiseuille flows and those which are constructed by the Fourier method. The solution of the governing equation for flows such as the flow over a plane wall and the Couette flow is in a series form which is slowly convergent for small values of time. To overcome the difficulty in the calculation of the value of the velocity for small values of time, a practical method is given. The other property of unsteady flows of a second grade fluid is that the no-slip boundary condition is sufficient for unsteady flows, but it is not sufficient for steady flows so that an additional condition is needed. In order to discuss the properties of unsteady unidirectional flows of a second grade fluid, some illustrative examples are given.  相似文献   

9.
This paper studies the effects of a second‐grade fluid on the flow and heat transfer characteristics in a divergent/convergent channel. The momentum and energy equations are first given in a nondimensional form and then solved analytically using the method of homotopy analysis method. Convergence of derived series solutions is shown. Graphical results for the velocity and the temperatures are presented and discussed for various emerging parameters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This present analysis discusses the mixed convection boundary layer flow of a magnetohydrodynamic second grade fluid over an unsteady permeable stretching sheet. The time‐dependent stretching velocity and the surface temperature are chosen. Series solutions of the governing boundary value problems are obtained by employing homotopy analysis method. Convergence of the obtained solution is explicitly discussed. The dependence of velocity and temperature profiles on the various quantities is shown and discussed by plotting graphs. Skin friction coefficient and the local Nusselt number tabulated and analyzed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An analysis has been carried out for three‐dimensional fluid over a stretching surface. Similarity transformations are invoked for the conversion of nonlinear partial differential equations to the ordinary differential equations. Computations for the series solution are made by using homotopy analysis method. Graphical results are obtained. Attention has been particularly given to the influence of Deborah number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, two different solutions in the form of series of the governing equation of unsteady flow of a second grade fluid are considered. These are series expansions with respect to inverse power of time and a perturbation expansion. Two illustrative examples are given. One of them is the unsteady flow of a second grade fluid over a plane wall suddenly set in motion and the other is the diffusion of a line vortex in a fluid of second grade. It is a remarkable fact that the expression of the series expansion with respect to inverse power of time is exactly in the same form as that of the perturbation expansion. Thus, it is possible to replace a series expansion with respect to inverse power of time with a perturbation expansion.  相似文献   

13.
A heterogeneous domain decomposition approach is followed to simulate the unsteady wavy flow generated by a body moving beneath a free surface. Attention being focused on complex free surface configurations, including wave‐breaking phenomena, a two‐fluid viscous flow model is used in the free surface region to capture the air–water interface (via a level‐set technique), while a potential flow approximation is adopted to describe the flow far from the interface. Two coupling strategies are investigated, differing in the transmission conditions. Both the adopted approaches make use of the inviscid velocity field as boundary condition in the Navier–Stokes solution. For validation purposes, two different two‐dimensional non‐breaking flows are simulated. Domain decomposition results are compared with both fully viscous and fully inviscid results, obtained by solving the corresponding equations in the whole fluid domain, and with available experimental data. Finally, the unsteady evolution of a steep breaking wave is followed and some of the physical phenomena, experimentally observed, are reproduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines the combined effects of a transverse magnetic field and variable viscosity on unsteady flow of a reactive third‐grade electrically conducting fluid and heat transfer in a channel with convective cooling at the surface. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi‐implicit finite‐difference scheme. Both numerical and graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system. It is in general noted that those parameters that increase/decrase one flow quantity (velocity or temperature) also lead to the increase/decrease respectively of the other quantity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A two‐dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo‐symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper presents the extension of a high‐resolution conservative scheme to the one‐dimensional one‐pressure six‐equation two‐fluid flow model. Only mixtures of water and air have been considered in this study, both fluids have been characterized using simple equations of state, namely stiffened gas for the liquid phase and perfect gas for the gas phase. The resulting scheme is explicit and first‐order accurate in space and time. A second‐order version of the scheme has also been derived using the MUSCL strategy and slope limiters. Some numerical results show the good capabilities of this type of schemes in the solution of discontinuities in two‐fluid flow problems, all of them are based on water/air numerical benchmarks widely used in the two‐phase flow literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
An unsteady Navier–Stokes solver for incompressible fluid is coupled with a level set approach to describe free surface motions. The two‐phase flow of air and water is approximated by the flow of a single fluid whose properties, such as density and viscosity, change across the interface. The free surface location is captured as the zero level of a distance function convected by the flow field. To validate the numerical procedure, two classical two‐dimensional free surface problems in hydrodynamics, namely the oscillating flow in a tank and the waves generated by the flow over a bottom bump, are studied in non‐breaking conditions, and the results are compared with those obtained with other numerical approaches. To check the capability of the method in dealing with complex free surface configurations, the breaking regime produced by the flow over a high bump is analyzed. The analysis covers the successive stages of the breaking phenomenon: the steep wave evolution, the falling jet, the splash‐up and the air entrainment. In all phases, numerical results qualitatively agree with the experimental observations. Finally, to investigate a flow in which viscous effects are relevant, the numerical scheme is applied to study the wavy flow past a submerged hydrofoil. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号