首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An analysis of a second-grade fluid in a semi-porous channel in the presence of a chemical reaction is carried out to study the effects of mass transfer and magnetohydrodynamics. The upper wall of the channel is porous, while the lower wall is impermeable. The basic governing flow equations are transformed into a set of nonlinear ordinary differential equations by means of a similarity transformation. An approximate analytical solution of nonlinear differential equations is constructed by using the homotopy analysis method. The features of the flow and concentration fields are analyzed for various problem parameters. Numerical values of the skin friction coefficient and the rate of mass transfer at the wall are found.  相似文献   

2.
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.  相似文献   

3.
This study is focused on the heat and mass transfer effects in a magnetohydrodynamic (MHD) flow of a viscous nanofluid saturating a porous medium past an exponentially radiating stretching sheet. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. It is noted that stratification affects the local Nusselt and Sherwood numbers.  相似文献   

4.
5.
In this paper, a comprehensive mathematical analysis is carried out on an unsteady boundary-layer flow with heat and mass transfer characteristics of a viscous fluid through porous media. Fluid suction or blowing is assumed to take place at the surface. The governing coupled nonlinear partial differential equations are transformed into coupled nonlinear ordinary differential equations by using a similarity transformation and are solved analytically and numerically by using the homotopy analysis method and the Runge-Kutta and shooting technique, respectively. A comparison between analytical and numerical results is conducted, which shows excellent agreement.  相似文献   

6.
This paper presents an analytical solution of the problem of free-convective magnetohydrodynamic flow over a stretched sheet with the Hall effect and mass transfer taken into account. A similarity transform reduces the Navier-Stokes, energy, Ohm law, and mass-transfer equations to a system of nonlinear ordinary differential equations. The governing equations are solved analytically using an analytical method for solving nonlinear problems, namely, the homotopy analysis method. The results are compared with the results of a promising numerical method of differential quadrature developed by the authors. It is shown that there is very good agreement between analytical results and those obtained by the differential quadrature method. The differential quadrature method was validated, and the effects of non-dimensional parameters on the velocity, temperature and concentration profiles were studied.  相似文献   

7.
Based on the Timoshenko beam model the equations of motion are obtained for large deflection of off-center impact of a column by a rigid mass via Hamilton's principle. These are a set of coupled nonlinear partial differential equations. The Newmark time integration scheme and differential quadrature method are employed to convert the equations into a set of nonlinear algebraic equations for displacement components. The equations are solved numerically and the effects of weight and velocity of the rigid mass and also off-center distance on deformation of the column are studied.  相似文献   

8.
The steady nonlinear hydromagnetic flow of an incompressible, viscous and electrically conducting fluid with heat transfer over a surface of variable temperature stretching with a power-law velocity in the presence of variable transverse magnetic field is analysed. Utilizing similarity transformation, governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations and they are numerically solved using fourth-order Runge–Kutta shooting method. Numerical solutions are illustrated graphically by means of graphs. The effects of magnetic field, stretching parameter and Prandtl number on velocity, skin friction, temperature distribution and rate of heat transfer are discussed.  相似文献   

9.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

10.
Network simulation method(NSM) is used to solve the laminar heat and mass transfer of an electricallyconducting,heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations,in a single independent variable,η. The resulting coupled,nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters,viz Prandtl number,thermophoretic coeffcient(a function of Knudsen number),thermal conductivity parameter,wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication,aerosol filter precipitators,particle deposition on hydronautical blades,semiconductor wafer design,thermo-electronics and problems including nuclear reactor safety.  相似文献   

11.
The present contribution deals with the thermophoresis particle deposition and thermal radiation effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by means of the fourth-order Runge–Kutta method with a shooting technique. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are tabulated and discussed.  相似文献   

12.
Effects of heat and mass transfer on the mixed convection flow of a magnetohydrodynamic (MHD) micropolar fluid bounded by a stretching surface have been investigated. Homotopy analysis procedure is adopted for computations of a set of coupled nonlinear ordinary differential equations. Numerical values of skin friction coefficient and Nusselt and Sherwood numbers are worked out. A comparative study is provided with the limiting available numerical solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This work deals with the study of the boundary layer flow and mass transfer of a visco-elastic fluid immersed in a porous medium over a stretching surface in the presence of surface slip, chemical reaction and variable viscosity. The partial differential equations governing the flow have been transformed by similarity transformation into a system of coupled nonlinear ordinary differential equations which is solved numerically by means of the fourth order Runge-Kutta integration scheme coupled with the shooting technique. The effects of various involved interesting parameters on the velocity fields and concentration fields are shown graphically and investigated. In addition, tabulated results for the local skin-friction coefficient and the local Sherwood number are presented and discussed.  相似文献   

14.
This work deals with the study of the boundary layer flow and mass transfer of a visco-elastic fluid immersed in a porous medium over a stretching surface in the presence of surface slip, chemical reaction and variable viscosity. The partial differential equations governing the flow have been transformed by similarity transformation into a system of coupled nonlinear ordinary differential equations which is solved numerically by means of the fourth order Runge-Kutta integration scheme coupled with the shooting technique. The effects of various involved interesting parameters on the velocity fields and concentration fields are shown graphically and investigated. In addition, tabulated results for the local skin-friction coefficient and the local Sherwood number are presented and discussed.  相似文献   

15.
The steady laminar boundary layer flow and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel to a constant free stream is studied in this paper. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations are reduced to a set of two nonlinear ordinary differential equations, before being solved numerically using the Runge–Kutta–Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, moving parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. It is found that the problem admits dual solutions.  相似文献   

16.
An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

17.
This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

18.
Summary  The nonsimilar boundary-layer flow and heat transfer over a stationary permeable surface in a rotating fluid in the presence of magnetic field, mass transfer and free stream velocity are studied. The parabolic partial differential equations governing the flow have been solved numerically by using a difference–differential method. For small streamwise distance, these partial differential equations are also solved by a perturbation technique with Shanks transformation. For uniform mass transfer, analytical solutions are obtained. The surface skin friction coefficients and the Nusselt number increase with the magnetic field, suction and streamwise distance from the leading edge of the plate except the skin friction coefficient in the y-direction which decreases with the increasing magnetic field. Received 4 December 2001; accepted for publication 24 September 2002  相似文献   

19.
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters.  相似文献   

20.
The diffusion‐thermo and thermal‐diffusion effects on heat and mass transfer by mixed convection boundary layer flow over a vertical isothermal permeable surface embedded in a porous medium were studied numerically in the presence of chemical reaction with temperature‐dependent viscosity. The governing nonlinear partial differential equations are transformed into a set of coupled ordinary differential equations, which are solved numerically by using Runge–Kutta method with shooting technique. Numerical results are obtained for the velocity, temperature and concentration distributions, and the local skin friction coefficient, local Nusselt number and local Sherwood number for several values of the parameters, namely, the variable viscosity parameter, suction/injection parameter, Darcy number, chemical reaction parameter, and Dufour and Soret numbers. The obtained results are presented graphically and in tabulated form, and the physical aspects of the problem are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号