首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

2.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

3.
A concise and convergent total synthesis of the highly cytotoxic marine natural product apratoxin A is accomplished by an 18‐step linear sequence. The high sensitivity of the thiazoline, bearing an adjacent β‐hydroxyl group at the C35‐position, results in the assembly process requiring the inclusion of appropriate protecting groups and the careful optimization of all individual transformations. In the synthesis of 3,7‐dihydroxy‐2,5,8,8‐tetramethylnonanoic acid (Dtena), the three reagent‐controlled asymmetric reactions enables us to introduce four chiral carbon centers in a dihydroxylated fatty acid moiety. Formation of the hindered ester and sterically‐unfavorable N‐methylamide bonds were successfully demonstrated. The thiazoline in apratoxin A was constructed by Tf2O and Ph3PO‐mediated dehydrative cyclization, and final macrocyclization was achieved between N‐methylisoleucine and proline residues. Moreover, an oxazoline analogue and a C34 epimer of apratoxin A have also been elaborated in a similar approach. This synthetic route would enable assembly of other analogues differing in stereocenters of Dtena and their amino acids.  相似文献   

4.
A convenient approach to 2,2′‐(1,4‐phenylene)bis[1‐acetyl‐1,2‐dihydro‐4H‐3,1‐benzoxazin‐4‐one] derivatives 4 was explored employing the one‐pot condensation of anthranilic acids (=2‐aminobenzoic acids) 1 with terephthalaldehyde (=benzene‐1,4‐dicarboxaldehyde; 2 ) under ultrasound‐irradiation conditions (Scheme 1). The reactions proceeded smoothly in the presence of excess Ac2O in the absence of any other catalyst and solvent to afford the respective products in high yields.  相似文献   

5.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

6.
The Michael‐type addition of a 4‐hydroxycoumarin (=4‐hydroxy‐2H‐1‐benzopyran‐2‐one) 1 to a β‐nitrostyrene (=(2‐nitroethenyl)benzene) 2 in the presence of AcONH4 leads to substituted (3E)‐3‐[amino(aryl)methylidene]chroman‐2,4‐diones (=(3E)‐3‐[amino(aryl)methylene]‐2H‐1‐benzopyran‐2,4(3H)‐diones) 4 (Table 1). High yields, short reaction time, and easy workup are advantages of this novel one‐pot three‐component reaction.  相似文献   

7.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

8.
A simple synthesis of 2‐hydrazinylidene‐3‐hydroxy‐4H‐furo[3,2‐c]pyran‐4‐ones is described. A mixture of (isocyanoimino)(triphenyl)phosphorane, an aromatic aldehyde, and dehydroacetic acid (=3‐acetyl‐2‐hydroxy‐6‐methyl‐4H‐pyran‐4‐one) undergo a 1 : 1 : 1 addition reaction under mild conditions to afford the title compounds in excellent yields.  相似文献   

9.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

10.
A selective synthesis of 4‐methylthiosemicarbazide (=N‐methylhydrazinecarbothioamide; 4a ) derivatives by reaction with benzil (=1,2‐diphenylethane‐1,2‐dione; 3 ) is described. The reaction conditions determined the condensation product formed. The most important factor was the acid used: in the presence of conc. HCl solution, the open‐chain 2 : 1 compound 1a was exclusively obtained, whereas in the presence of 2M HCl, the cyclic 1 : 1 condensation product 2a was formed. The alcohol used, the presence of H2O, and the time of heating were additional crucial factors. The new cyclic compound 2a with a MeO group was exclusively formed when working under high‐dilution conditions. The reaction with the 4‐phenyl derivative 4b gave new cyclic compounds as the major products under all conditions used (Scheme).  相似文献   

11.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

12.
The crystal structure of 5‐fluoro‐1‐octanoyl­uracil [5‐fluoro‐1‐octanoyl­pyrimidine‐2,4(1H,3H)‐dione, C12H17FN2O3], a lipophilic prodrug of 5‐fluoro­uracil, is described. The 5‐fluoro­pyrimidine‐2,4(1H,3H)‐dione moiety is similar to the known structure of 1‐acetyl‐5‐fluoro­uracil. The 1‐octanoyl group and the 5‐fluoro­uracil moiety are essentially coplanar, with the octanoyl carbonyl group oriented towards the the ring C—H group and away from the nearer ring carbonyl group. The torsion angle C—N—C—O (from the ring CH group to the octanoyl carbonyl group) of 9.2 (2)° is similar to the corresponding torsion angles reported for 1‐acetyl‐5‐fluoro­uracil (17.3 and 1.6°) and 1,3‐di­acetyl‐5‐fluoro­uracil (8.8°).  相似文献   

13.
4‐(Acylamino)‐5‐nitrosopyrimidines react either by a reductive condensation to provide 8‐substituted guanines, or by a Diels–Alder cycloaddition, or an ene reaction, to provide 6‐substituted pteridinones, depending on the nature of the acyl group and the reaction conditions. Experimental details are provided for the transformation of (acylamino)‐nitrosopyrimidines to 8‐substituted guanines, and the scope of the reaction is further demonstrated by transforming the trifluoro acetamide 25 to the 8‐(trifluoromethyl)guanine ( 27 ), and the N,Nbis(nitrosopyrimidinyl)‐dicarboxamide 29 to the (R,R)‐1,2di(guan‐8‐yl)ethane‐1,2‐diol ( 32 ). An intramolecular Diels–Alder reaction of the N‐sorbyl (=N‐hexa‐2,4‐dienoyl) nitrosopyrimidine 10 , followed by a spontaneous elimination to cleave the N,O bond of the initial cycloaddition product provided the pteridinones 14 or 15 , characterized by a (Z)‐ or (E)‐3‐hydroxyprop‐1‐enyl group at C(6). Treatment of 10 with Ph3P led to the C(8)‐penta‐1,3‐dienyl‐guanine 18 . The ene reaction of the N‐crotonyl (=N‐but‐2‐enoyl) nitrosopyrimidine 19 provided the 6‐vinyl‐pteridinone 20a that dimerized readily to 21a , while treatment of 19 with Ph3P led in high yield to 8‐(prop‐1‐enyl)guanine ( 23 ). The structure of the dimer 21 was established by X‐ray analysis of its bis(N,N‐dimethylformamidine) derivative 21b . The crystal structure of the nitroso amide 10 is characterized by two molecules in the centrosymmetric unit cell. Intermolecular H‐bonds connect the amino group to the amide carbonyl and to N(1). The crystalline bis(purine) 30 forms a left‐handed helix with four molecules per turn and a pitch of 30.2 Å.  相似文献   

14.
麻生明  段德慧 《中国化学》2002,20(11):1363-1368
IntroductionWiththefamousDIOPligand ,KaganintroducedtheimportantconceptofC2 symmetryinliganddesign .1However ,itisnotalwaystruethataC2 symmetricligandshouldnecessarilybesuperiortoanon symmetriccoun terpart .Transitionmetal catalyzedallylicalkylationviasymme…  相似文献   

15.
The three‐component reaction of the zwitterions generated from dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates and triphenylphosphine (Ph3P) with isoindoline‐1,3‐diimine (=1H‐isoindole‐1,3(2H)‐diimine) is described (Scheme 1). This reaction affords the corresponding special type of substituted dihydropyrimido[2,1‐a]isoindole derivatives in good yields without using any catalyst and activation (Table).  相似文献   

16.
A method for the introduction of the 2′‐O‐[(triisopropylsilyl)oxy]methyl (=tom) group into N‐acetylated, 5′‐O‐dimethoxytritylated ribonucleosides is presented. The corresponding 2′‐O‐tom‐protected phosphoramidite building blocks were obtained in pure form and were successfully employed for the routine synthesis of oligoribonucleotides on DNA synthesizers. Under DNA coupling conditions (2.5 min coupling time for a 1.5‐μmol synthesis scale) and with 5‐(benzylthio)‐1H‐tetrazole (BTT) as activator, 2′‐O‐tom‐protected phosphoramidites exhibited average coupling yields >99.4%. The combination of N‐acetyl and 2′‐O‐tom protecting groups allowed a reliable and complete two‐step deprotection, first with MeNH2 in EtOH/H2O and then with Bu4NF in THF, without concomitant destruction of the product RNA sequences.  相似文献   

17.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

18.
The title compound, bis(μ‐4‐acetyl‐3‐amino‐5‐methyl­pyrazol­ato‐N1:N2)­bis­[(acetato‐O)­(4‐acetyl‐3‐amino‐5‐methyl­pyraz­ole‐N2)­zinc(II)], [Zn2(C6H8N3O)2(C2H3O2)2(C6H9N3O)2], ex‐ists as a centrosymmetric binuclear mol­ecule with two tetrahedrally coordinated Zn atoms bridged by two pyrazolate anions. The geometry of the terminal and bridging pyrazole ligands are slightly different as a consequence of their differing modes of coordination.  相似文献   

19.
Various isoindolo[2,1‐a]quinazoline‐5,11‐dione derivatives 3 were synthesized in good yields by means of the reductive reaction of N‐substituted 2‐nitrobenzamides 1 and 2‐formylbenzoic acids 2 in the presence of SnCl2?2 H2O under reflux in EtOH (Scheme, Table). The procedure needed two steps, the reduction of the nitro group of the 2‐nitrobenzamide and ring closure by nucleophilic addition of the NH2 group to both the formyl and carboxylic acid C?O groups.  相似文献   

20.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号