首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five coordination compounds of bismuth, lanthanum and praseodymium nitrate with the oxygen‐coordinating chelate ligand (iPrO)2(O)PCH2P(O)(OiPr)2 (L) are reported: [Bi(NO3)3(L)2] ( 1 ), [La(NO3)3(L)2] ( 2 ), [Pr(NO3)3(L)2] ( 3 ), [La(NO3)3(L)(H2O)] ( 4 ) and [Pr(NO3)3(L)(H2O)] ( 5 ). The compounds were characterized by means of single crystal X‐ray crystallography, 1H and 31P NMR spectroscopy in solution, solid‐state 31P NMR spectroscopy, IR spectroscopy, DTA‐TG measurements ( 1 , 2 and 4 ), conductometry and electrospray ionization mass spectrometry (ESI‐MS). In addition, DFT calculations for model compounds of 1 and 2 support our experimental work. In the solid state mononuclear coordination compounds were observed for 1 — 3 , whereas compounds 4 and 5 gave one‐dimensional hydrogen‐bonded polymers via water‐nitrate coordination. Despite of the similar ionic radii of bismuth(III), lanthanum(III) and praseodymium(III) for a given coordination number the bismuth and lanthanide compounds 1 — 3 are not isostructural. The bismuth compound 1 shows a 9‐coordinate bismuth atom whereas lanthanum(III) and praseodymium(III) atoms are 10‐coordinate in the lanthanide complexes 2 — 5 . The general LnO10 coordination motif in compounds 2 — 5 is best described as a distorted bi‐capped square antiprism. The BiO9 polyhedron might be deduced from the LnO10 polyhedron by replacing one oxygen ligand with a stereochemically active lone pair. The one‐to‐one complexes 4 and 5 dissociate in solution to give the corresponding one‐to‐two complexes 2 and 3 , respectively, and solvated Ln(NO3)3. In contrast to the lanthanides, the one‐to‐two bismuth complex 1 is less stable in CH3CN solution and partially dissociates to give solvated Bi(NO3)3 and (iPrO)2(O)PCH2P(O)(OiPr)2.  相似文献   

2.
尹汉东  王传华  邢秋菊 《中国化学》2005,23(12):1631-1636
Three bismuth(Ⅲ) complexes Bi(1,10-phen)[S2CN(CH3)2]2(NO3) (1), {Bi(S2COCH3)[S2CNC6Hs(CH3)]2}2 (2) and [Bi(S2CNBu2)2(CH3OH)(NO3)]∞ (3) were synthesized and characterized by elemental analysis and IR spectra. Their crystal structures were determined by X-ray single crystal diffraction analysis. Studies show that complex 1 has a monomeric structure with the central bismuth atom eight-coordinated in a capped distorted pentagonal bipyramidal geometry. The complex 2 takes centrosymmetric dimeric structure and the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry.In complex 3, the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry by bridging nitrate O atoms and the resulting structure is onedimensional infinite chain polymer.  相似文献   

3.
Abstract

Metal cations observed with tetrachloroaluminate anion provide insights into the structure and stability of reactive cations. Addition of tris(3,5-dimethylpyrazolyl)borate anion (TpMe2) to [BiCl2][AlCl4] traps a bismuth(III) dication, [TpMe2Bi]2+, possessing a highly electrophilic bismuth center with short coordinate Bi―N bonds. [TpMe2Bi]2+ has weak interactions with the chlorides of [Bi3Cl13]. Strong affinity of [TpMe2Bi]2+ with the triflate (OTf) observed in [TpMe2Bi(OTf)3]- demonstrates the high electrophilicity at bismuth.  相似文献   

4.
While addition of [Cp2ReH] to [Bi(OtBu)3] leads to an equilibrium containing [Cp2Re‐Bi(OtBu)2], [{Cp2Re}2Bi(OtBu)], tBuOH and [CpRe(μη5,η1‐C5H4)Bi–ReCp2], in the presence of water [{(Cp2Re)2Bi}2O] ( 1 ) is formed selectively. Also [FpH] [Fp = (η5‐C5H5)(CO)2Fe] can be employed as a precursor to form heterometallic bismuth compounds. Synthesis of [FpBi{OCH(CF3)2}2]2 ( 5 ) can be achieved by reaction of [FpH] with [Bi{OCH(CF3)2}3(thf)]2 and carboxylates [FpBi(O2CR)2]2 are generated upon treatment of [FpH] with [Bi(O2CR)3] (R = CH3, tBu). While the compounds [Fp‐Bi(O2CR)2]2 can also be obtained from reactions with Fp‐Fp, they are formed far more readily using [FpH] as the precursor. They typically crystallize as dimers, like the alkoxide 5 . A monomeric compound of the type [Fp‐BiX2] ( 6 ) could be isolated for X = thd (tetramethylheptanedionate), that is, after the reaction of [FpH] with [Bi(thd)3]. Altogether, the results demonstrate the potential of [FpH] as a precursor for [Fp‐BiX2] compounds, which are formed in reactions with bismuth alkoxides, carboxylates and diketonates.  相似文献   

5.
Polysulfonyl Amines. LXIX. Novel Pnictogen Disulfonylamides: Synthesis of Bismuth Dimesylamides and Crystal Structures of the Twelve-Membered Cyclodimer [Ph2BiN(SO2Me)2]2 and of the Ionic Complex [H(OAsPh3)2](MeSO2)2N? The novel bismuth(III or V) disulfonylamides Ph2BiN(SO2Me)2 ( 1 ), PhBi[N(SO2Me)2]2 ( 2 ), PhBi[N(SO2Me)2]Br ( 3 ), Bi[N(SO2Me)2]2Cl ( 4 ), Bi[N(SO2Me)2]Cl2 · 12-crown-4 ( 5 ) and Ph3Bi[N(SO2Me)2]Cl ( 6 ) were obtained by acidolysis of Ph3Bi with HN(SO2Me)2 (→ 1 ), by metathesis of AgN(SO2Me)2 with Ph2BiCl (→ 1 ) or PhBiBr2 (→ 2, 3 ), by condensation of BiCl3 with Me3SiN(SO2Me)2 (→ 4 ; in presence of 12-crown-4: → 5 ), or by oxidative addition of ClN(SO2Me)2 to Ph3Bi (→ 6 ). Independently of the molar ratio employed, triphenylarsane oxide and dimesylamine form the crystalline 2/1 complex [H(OAsPh3)2](MeSO2)2N? ( 7 ). The crystal packing of 7 (monoclinic, space group C2/c) consists of discrete cations displaying crystallographic Ci symmetry and a strong O …? H …? O hydrogen bond (H atom located on a centre of symmetry, O …? O′ 241.2 pm, As? O …? O′ 120°, As? O 168.3 pm), and chiral anions with crystallographic C2 symmetry (N? S 157.3 pm, S? N? S 122,9°). In the solid state, the bismuth(III) compound 1 (triclinic, space group P1 ) is a cyclodimer with crystallographic Ci symmetry, in which two Ph2Bi cations are connected through two (α-O, ω-O)-donating dimesylamide ligands to form a roughly twelve-membered [BiOSNSO]2 ring (Bi? O 239.7 and 246.6, O? S 148.0 and 145.4, S? N 157.7 and 159.2 pm, Bi? O? S 126.6 and 127.5°). The bismuth atom adopts a pseudo-trigonal-bipyramidal geometry (O? Bi? O 165.4, C? Bi? C 93.0, O? Bi? C 83.8 to 86.5°). The essentially similar conformations of the discrete anion in 7 and of the bidentate bridging ligand in 1 are discussed in detail.  相似文献   

6.
A series of homoleptic and heteroleptic bismuth(III) flavonolate complexes derived from six flavonols of varying substitution have been synthesised and structurally characterised. The complexes were evaluated for antibacterial activity towards several problematic Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE)) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The cell viability of COS-7 (monkey kidney) cells treated with the bismuth flavonolates was also studied to determine the effect of the complexes on mammalian cells. The heteroleptic complexes [BiPh(L)2] (in which L=flavonolate) showed good antibacterial activity towards all of the bacteria but reduced COS-7 cell viability in a concentration-dependent manner. The homoleptic complexes [Bi(L)3] exhibited activity towards the Gram-positive bacteria and showed low toxicity towards the mammalian cell line. Bismuth uptake studies in VRE and COS-7 cells treated with the bismuth flavonolate complexes indicated that Bi accumulation is influenced by both the substitution of the flavonolate ligands and the degree of substitution at the bismuth centre.  相似文献   

7.
(4‐Aminophenyl)arsonic acid (p‐arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4‐aminophenyl)arsonic acid (p‐arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4‐aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena‐poly[[[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]‐[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n , (II), catena‐poly[[triaquastrontium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Sr(C6H7AsNO3)2(H2O)3]n , (III), and catena‐poly[[triaquabarium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Ba(C6H7AsNO3)2(H2O)3]n , (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral [Mg(H2O)6]2+ cation, the two hydrogen p‐arsanilate anions and the four water molecules of solvation form a three‐dimensional network structure through inter‐species O—H and N—H hydrogen‐bonding interactions with water and arsonate O‐atom and amine N‐atom acceptors. In one‐dimensional coordination polymer (II), the distorted octahedral CaO6 coordination polyhedron comprises two trans‐related water molecules and four arsonate O‐atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four‐membered via a single O atom and the other is eight‐membered via O :O ′‐bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen‐bonding involving O—H…O, O—H…N and N—H…O interactions gives an overall three‐dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular M O7 coordination polyhedra about the M 2+ centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion‐related arsonate O :O ′‐bridges, giving eight‐membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter‐chain N—H…O and O—H…O hydrogen‐bonding interactions extend the structures into three dimensions and the crystal packing includes π–π ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].  相似文献   

8.
Homo‐ and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole‐, imidazole‐, thiadiazole‐ and thiazole‐based heterocyclic thiones (thiols): 1‐methyl‐1H‐tetrazole‐5‐thiol (1‐MMTZ(H)); 4‐methyl‐4H‐1,2,4‐triazole‐3‐thiol (4‐MTT(H)); 1‐methyl‐1H‐imidazole‐2‐thiol (2‐MMI(H)); 5‐methyl‐1,3,4‐thiadiazole‐2‐thiol (5‐MMTD(H)); 1,3,4‐thiadiazole‐2‐dithiol (2,5‐DMTD(H)2); and 4‐(4‐bromophenyl)thiazole‐2‐thiol (4‐BrMTD(H)). Reaction of BiPh3 with 1‐MMTZ(H) produced the rare BiV thiolato complex [BiPh(1‐MMTZ)4], which undergoes reduction in DMSO to give [BiPh(1‐MMTZ)2{(1‐MMTZ(H)}2]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2]. The crystal structures of [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2], [BiPh(5‐MMTD)2], [BiPh{2,5‐DMTD(H)}2(Me2C?O)] and [Bi(4‐BrMTD)3] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1‐ MMTZ, 4‐MTT and 4‐BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4‐MTT)2{4‐MTT(H)}2] and [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4‐MTT)2{4‐MTT(H)}2] against VRE, and 1.33 μM for [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2] against M. smegmatis and S. aureus. Tris‐thiolato BiIII complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS‐7 cells at 20 μg mL?1.  相似文献   

9.
A brief account of the synthesis, spectroscopic characterization and the antimicrobial (bacterial and fungal) behaviour of bis(diorganodithiocarbamato)organodithiocarbonatobismuth(III) complexes is presented. The reaction of bis(diorganodithiocarbamato)bismuth(III) chloride with potassium organodithiocarbonate in equimolar ratio yielded the corresponding mixed derivatives of the type [R′2NCS2]2BiS2COR [where, R′ = CH3 and C2H5; R = Et, Prn, Pri, Bun and Bui]. These have been characterized by molecular weight determinations, melting points (only solid complexes) and elemental (C, H, N, S and Bi) analysis as well as spectral IR and NMR [1H and 13C] studies. The antibacterial and antifungal activities of the free ligands and their bismuth complexes were found in vitro by the disc diffusion method. The complexes showed good antibacterial and antifungal effect on some selected bacterial and fungal strains. The antimicrobial activities of two standard antibiotics (Chloroamphenicol and Terbinafin) were also measured and compared with these complexes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A new linear bismuth(III) coordination polymer, catena‐poly[[chloridobismuth(III)]‐μ3‐1,10‐phenanthroline‐2,9‐dicarboxylato‐κ6O2:O2,N1,N10,O9:O9], [Bi(C14H6N2O4)Cl]n, has been obtained by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR spectroscopy, thermal stability studies and single‐crystal X‐ray diffraction. The structure is constructed by Bi(C14H6N2O4)Cl fragments in which each BiIII centre is seven‐coordinated by one Cl atom, four O atoms and two N atoms. The coordination geometry of the BiIII cation is distorted pentagonal–bipyramidal (BiO4N2Cl), with one bridging carboxylate O atom and one Cl atom located in the axial positions. The Bi(C14H6N2O4)Cl fragments are further extended into a one‐dimensional linear polymeric structure via subsequent but different centres of symmetry (bridging carboxylate O atoms). Neighbouring linear chains are assembled via weak C—H...O and C—H...Cl hydrogen bonds, forming a three‐dimensional supramolecular architecture. Intermolecular π–π stacking interactions are observed, with centroid‐to‐centroid distances of 3.678 (4) Å, which further stabilize the structure. In addition, the solid‐state fluorescence properties of the title coordination polymer were investigated.  相似文献   

11.
New complexes catena‐(μ2‐nitrato‐O,O′)bis(piperidinedithiocarbamato)bismuth(III) ( 1 ) and tetrakis(μ‐nitrato)tetrakis[bis(tetrahydroquinolinedithiocarbamato)bismuth(III)] ( 2 ) were synthesised and characterised by elemental analysis, FTIR spectroscopy and thermogravimetric analysis. The single‐crystal X‐ray structures of 1 and 2 were determined. The coordination numbers of the BiIII ion are 8 for 1 and ≥6 for 2 when the experimental electron density for the nominal 6s2 lone pair of electrons is included. Both complexes were used as single‐source precursors for the synthesis of dodecylamine‐, hexadecylamine‐, oleylamine and tri‐n‐octylphosphine oxide‐capped Bi2S3 nanoparticles at different temperatures. UV/Vis spectra showed a blueshift in the absorbance band edge characteristic of a quantum size effect. High‐quality, crystalline, long and short Bi2S3 nanorods were obtained depending on the thermolysis temperature, which was varied from 190 to 270 °C. A general trend of increasing particle breadth with increasing reaction temperature and increasing length of the carbon chain of the amine (capping agent) was observed. Powder XRD patterns revealed the orthorhombic crystal structure of Bi2S3.  相似文献   

12.
Russian Journal of Coordination Chemistry - The crystalline heteroleptic bismuth(III) complexes, [Bi{S2CN(iso-C4H9)2}2(NO3)] (I) and [Bi{S2CN(C3H7)2}2Cl] (II), are isolated in preparative yields....  相似文献   

13.
A range of bismuth and organobismuth carboxylates has been prepared e.g. Bi(carboxylate)3; PhBi(carboxylate′)2; and Ph3Bi(carboxylate″)2 where carboxylate=octanoate, i.e. 5-ethylhexanoate; carboxylate′=acetate and monomaleate; carboxylate″=acetate, propionate, benzoate, 5-ethylhexanoate, and 0.5 oxalate. A combination of IR (solid) and NMR (solution) studies suggests that in the case of the bismuth(V) compounds the carboxylates may be inequivalent in the crystalline forms but equivalent in solution. The compounds have been tested as driers in two paint formulations, Synolac 50W (linseed-based) and Sorbal P470 (linoleic-rich). Although initially promising results were obtained for Synolac 50W, the shelf life of the bismuth driers was poor. With Sorbal P470, bismuth driers were inferior to established formulations. However, a combination of Bi(OOCH7H15)3 with tris(diethyldithiocarbamato)-bismuth(III) out-performed established driers.  相似文献   

14.
Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans‐[MIVF4(CN)2]2? (M=Re, Os), obtained from their homoleptic [MIVF6]2? parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans‐[ReF4(CN)2]2? as compared to [ReF6]2?, reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials.  相似文献   

15.
More than 80 years after Paneth’s report of dimethyl bismuth, the first monomeric BiII radical that is stable in the solid state has been isolated and characterized. Reduction of the diamidobismuth(III) chloride Bi(NONAr)Cl (NONAr=[O(SiMe2NAr)2]2−; Ar=2,6‐iPr2C6H3) with magnesium affords the BiII radical .Bi(NONAr). X‐ray crystallographic measurements are consistent with a two‐coordinate bismuth in the +2 oxidation state with no short intermolecular contacts, and solid‐state SQUID magnetic measurements indicate a paramagnetic compound with a single unpaired electron. EPR and density functional calculations show a metal‐centered radical with >90 % spin density in a p‐type orbital on bismuth.  相似文献   

16.
The bismuth tris(triorganosilanolates) [Bi(OSiR3)3] ( 1 , R = Me; 2 , R = Et; 3 , R = iPr) were prepared by reaction of R3SiOH with [Bi(OtBu)3]. Compound 1 crystallizes in the triclinic space group with Z = 2 and the lattice constants a = 10.323(1) Å, b = 13.805(1) Å, c = 21.096(1) Å and α = 91.871(4)°, β = 94.639(3)°, γ = 110.802(3)°. In the solid state compound 1 is a trimer as result of weak intermolecular bismuth‐oxygen interactions with Bi–O distances in the range 2.686(6)–3.227(3) Å. The coordination at the bismuth atoms Bi(1) and Bi(3) is best described as 3 + 2 coordination whereas Bi(2) shows a 3 + 3 coordination. The intramolecular Bi–O distances fall in the range 2.041(3)–2.119(3) Å. Compound 3 crystallizes in the orthorhombic space group Pbcm with Z = 4 and the lattice constants a = 7.201(1) Å, b = 23.367(5) Å and c = 20.893(1) Å, whereas the triethylsilyl‐derivative 2 is liquid. In contrast to [Bi(OSiMe3)3] ( 1 ) compound 3 is monomeric in the solid state, but shows similar intramolecular Bi–O distances in the range 1.998(2)–2.065(5) Å. The bismuth silanolates are highly soluble in common organic solvents and strongly moisture sensitive. Compound 1 shows the lowest thermal stability.  相似文献   

17.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O? [Bi≡B?B≡O]? in which both boron atoms can be viewed as sp‐hybridized and the [B?BO]? fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O? and ReB2O? and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O? has a closed‐shell bent structure (Cs, 1A′) with BO? coordinated to an Ir≡B unit, (?OB)Ir≡B, whereas ReB2O? is linear (C∞v, 3Σ?) with an electron‐precise Re≡B triple bond, [Re≡B?B≡O]?. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

18.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

19.
The reaction of triphenylbismuth [BiPh(3)] with several heterocyclic carboxylic acids was explored. Seven crystalline compounds, [PhBi(2-O(2)C-3-(OH)C(5)H(3)N)(2)(2-O(2)C-3-(OH)C(5)H(3)NH)] (5), [(Bi(2-O(2)C-3-(OH)C(5)H(3)N)(4))(C(5)H(5)NH)(C(5)H(5)N)] (7), [PhBi(2-O(2)C-C(4)H(3)N(2))(2)(2-O(2)C-C(4)H(4)N(2))·H(2)O] (8), [PhBi(2-O(2)C-C(9)H(6)N)(2)·H(2)O] (9), [Ph(2)Bi(O(2)C-C(4)H(3)O)] (10), [Ph(2)Bi(O(2)C-C(4)H(3)S)] (11) and [PhBi(O(2)C-C(4)H(3)S)(2)](2) (12), were prepared by simple reactions using BiPh(3) and the corresponding acids, 3-hydroxypicolinic acid, pyrazine-2-carboxylic acid, quinoline-2-carboxylic (quinaldic) acid, furan-2-carboxylic acid and thiophene-2-carboxylic acid. Compound 5 primarily exhibits a coordination number of six with pentagonal pyramidal geometry at bismuth, but an additional weak Bi···O interaction in the direction of the lone pair of electrons is present. This feature leads to a weakly bound dimer. The use of pyridine as the solvent in a similar reaction, however, led to 7, in which all of the Bi-Ph bonds are cleaved. In this compound, bismuth exhibits a coordination number of eight and distorted dodecahedral geometry. In compound 8, the geometry around bismuth is primarily a pentagonal pyramid, however, clear-cut but weak secondary Bi···N interactions leading to a dimeric formulation are discernible in the structure. The quinaldate compound 9 exhibits a lower formal coordination number of five for bismuth, with square pyramidal geometry, but again two secondary Bi···O interactions for each bismuth in the direction of the lone pair lead to a dimer. A similar secondary Bi···O interaction involving furan oxygen is present in the furoate compound 10, which is a polymeric chain (one dimensional coordination polymer). Although the thiophene carboxylate 11 is also a polymeric chain, no Bi···S interactions are present. Unlike the previously reported tetrameric biscarboxylate [PhBi(2-O(2)C-C(5)H(3)N)(2)](4), the thiophene carboxylate [PhBi(O(2)C-C(4)H(3)S)(2)](2) (12) is a dimer considering only primary interactions. However, these dimers are arranged in such a way that there are secondary Bi···S interactions in the structure in the expected direction of the lone pair of electrons on bismuth. Thus, these studies suggest that the stereochemical activity (or inactivity) of the bismuth lone pair of electrons need to be judged more cautiously. TGA studies are consistent with the presence of Bi-Ph groups in all of the compounds, except 7, as indicated by their formulae.  相似文献   

20.
The title compound, [Co(C19H15N3O5S)(C12H8N2)]·5H2O, has a moderately distorted octahedral coordination environment composed of two N atoms of a 1,10‐phenanthroline ligand and one N and three O atoms of an N‐{[4‐(1,3‐benzothiazol‐2‐yl)anilino]carbonylmethyl}iminodiacetate (ZL‐52−) ligand. The ring systems of the phenanthroline and ZL‐52− ligands are coplanar and the complexes pack in layers parallel to the ab plane with the rings of adjacent complexes facing one another. The layers stack along the c axis and are linked by hydrogen bonds involving the five water solvent molecules in the asymmetric unit and O atoms of the acetate groups of the ZL‐52− ligand. This is believed to be the first crystal structure of a complex of a 2‐(4‐aminophenyl)benzothiazole ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号