首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
To evaluate the influence of the electronic effects on the polymerization temperature, we looked at several 3‐phenyl‐3,4‐dihydro‐2‐H‐1,3‐benzoxazine monomers with electron‐withdrawing or electron‐donating groups in the 6 and 4′ positions. The monomers were synthesized and characterized using different synthetic methods to achieve the best possible results. The thermal polymerization of these benzoxazine monomers was analyzed by differential scanning calorimetry, and the polymerization behavior and the polymer characteristics were related to the electronic character of the substituent and the polymerization mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3353–3366, 2008  相似文献   

3.
Nanomagnetite thermosets were obtained by thermally activated ring opening copolymerization of benzoxazine groups coated on the surface of the nanomagnetite with bare benzoxazine. For this purpose, carboxylic acid containing 1,3‐benzoxazine was synthesized and covalently bonded on magnetite nanoparticles by postcoating method. The average size of benzoxazine coated nanoparticles was 40–100 nm as determined by Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) measurements. The crystal structure of benzoxazine coated nanoparticles was shown to be magnetite by X‐ray diffraction (XRD) analysis. Thermally activated curing behavior of nanomagnetite‐benzoxazines has also been studied by differential scanning calorimetry (DSC). Magnetic and thermal properties of the cured samples were investigated. It was shown that the precursor nanomagnetite benzoxazine and cured samples exhibited typical ferromagnetic character with low coercivities between 1.5 and 2.5 Oe. The cured samples showed high thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6780–6788, 2008  相似文献   

4.
Aside from their outstanding properties such as thermal and chemical stability and excellent mechanical performance, benzoxazines suffer from high polymerization temperatures. Isomeric mixtures of bifunctional benzoxazines based on resorcinol proved already to be highly reactive monomers enabling polymerizations at lower temperatures. This contribution describes the polymerization behavior of single benzoxazine isomers and furthermore the influence of different substituents at the aniline moiety on the curing temperature. Single isomers of bifunctional benzoxazines are now accessible in a straightforward one‐pot synthesis starting from resorcinol and the appropriate N‐phenyl functionalized aniline component. The asymmetric benzoxazine monomers bearing no (R‐a: Tpeak = 179 °C) or electron‐donating substituents in meta position to N (R‐3,5dma: Tpeak = 183 °C) succeed in lowering the polymerization temperature. Additionally, the impact of several initiating systems was studied resulting in a decrease of the polymerization temperature for all studied resorcinol derived benzoxazine isomers (down to 144 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1243–1251  相似文献   

5.
Cationic ring opening polymerization at a lower temperature range/faster polymerization than ordinary benzoxazine resins has been achieved without added initiators or catalysts via liquid crystalline (LC) benzoxazine resins. Faster polymerization is observed even above the liquid crystal forming temperature. The FTIR spectra show that opening of the oxazine ring occurs even at 110 °C generating phenolic groups that auto‐catalyzed the cationic polymerization of the monomer increasing the rate of polymerization. The newly formed H‐bonds inhibit the formation of LC phases after polymerization. Some of the monomers show nematic LC transitions upon cooling. None of them showed LC transitions during the heating cycle, exhibiting monotropic LC phases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5871–5881, 2009  相似文献   

6.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Novel mono‐ and difunctional aliphatic oxyalcohol‐based benzoxazines have been synthesized and characterized in detail. Molecular structures of the monomers were investigated by spectral analysis. The obtained benzoxazine monomers exhibit fluidic behavior, which makes them particularly useful for many applications compared to other traditional benzoxazines. Differential scanning calorimetry was used to monitor the thermal crosslinking behavior of synthesized monomers. Mono‐ and bifunctional benzoxazine monomers exhibited low curing exhothermic peak with the onset around 173 and 180 °C, respectively. Relatively, low ring‐opening polymerization temperature was due to the hydroxyl groups present in the structure of the monomers. The hydrogen bonding of hydroxyl groups may cause alignment of the monomers in the liquid state. Thermal stabilty of the polybenzoxazines was studied by thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

8.
Benzoxazines derived from aniline and 4‐hydroxybenzoic acid and from phenol and 4‐aminobenzoic acid were prepared with two different synthetic approaches. When the carboxylic group reacted with epichlorohydrin, glycidylic derivatives M‐1 and M‐2 , respectively, were obtained. The ring opening of benzoxazine and epoxy took place simultaneously with no catalyst for both monomers. Likewise, both ring‐opening polymerizations took place when boron trifluoride monoethylamine (BF3·MEA) or 4‐(N,N‐dimethylamino)pyridine was used as a catalyst for M‐1 . However, for M‐2 , when BF3·MEA was used as a catalyst, the epoxy and benzoxazine ring openings could be distinguished, and a polyether intermediate containing benzoxazine side chains could be obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1529–1540, 2006  相似文献   

9.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
New methacrylate monomers containing phosphonic acid or both phosphonic and carboxylic acids were synthesized through the reaction of t‐butyl α‐bromomethyl acrylate with triethyl phosphite followed by the selective hydrolysis of the phosphonate or t‐butyl ester groups with trimethylsilyl bromide and trifluoroacetic acid. The copolymerization of these monomers with 2‐hydroxyethylmethacrylate was investigated with photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as a photoinitiator. Quantum mechanical tools were also used to understand the mechanistic behavior of the polymerization reactions of these synthesized monomers. The propagation and chain‐transfer reactions were considered and rationalized. A strong effect of the monomer structure on the rate of polymerization was observed. The polymerization reactivities of the monomers increased with decreasing steric hindrance and/or increasing hydrogen‐bonding capacity because of the hydrolysis of the phosphonate and the t‐butyl ester groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2574–2583, 2005  相似文献   

11.
Coumarins are used as a natural renewable resource to synthesize coumarin‐containing benzoxazine resins. The coumarin‐containing benzoxazines are fully characterized in terms of their chemical structure by Fourier‐transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. The influence of electronic effects caused by the substituents on the polymerization temperature is also evaluated. Thermal properties of the resulting thermosets are characterized by differential scanning calorimetry and thermogravimetric analysis, showing good stability and char yields higher than 50%. The coumarin‐containing polybenzoxazine thermosets show Tg values in the range between 160 and 190 °C. Thus, the herein presented coumarin‐containing benzoxazine resins are proven to be competitive monomers when compared with other petroleum‐based benzoxazine resins toward the generation of high‐performance thermoset. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1428‐1435  相似文献   

12.
A high‐molecular‐weight polymer (PBz) possessing reactive benzoxazine groups in the main chain was prepared through the Diels–Alder reaction using bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz) and bismaleimide (BMI) as monomers. The chemical structure of PBz is characterized with FTIR and 1H NMR. The polymer PBz was further thermally reacted with a high performance polymer (PBz‐R) through the ring‐opening addition reaction of benzoxazine groups and the addition reaction of maleimide groups. PBz‐R exhibit a high glass transition temperature of 242 °C, good thermal stability, high flame retardancy, high mechanical strength, and great flexibility. Another crosslinked polymer (PBz‐BR) curing from the mixture of BPA‐FBz and BMI was also prepared. The properties of PBz‐BR are also attractive but, however, not as good as what observed with PBz‐R. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6509–6517, 2008  相似文献   

13.
A phenol/aniline type monofunctional benzoxazine monomer, PH‐a , is synthesized and highly purified to study the intrinsic thermal ring‐opening polymerization of benzoxazines without the influence of any impurity. The successful synthesis of the monomer and its corresponding chemical structure are confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Purity of the compound is evaluated through differential scanning calorimetry (DSC) as well as elemental analysis (EA). Moreover, the thermal behavior of benzoxazine monomer toward polymerization is also studied by DSC, indicating that the highly purified benzoxazine monomer actually polymerize upon heating. The results present evidence of an intrinsic tendency for 1,3‐benzoxazines to undergo thermally induced ring‐opening polymerization upon heating only without any impurity participating during the reaction. This reveals that polybenzoxazines can be obtained by both the traditional thermally accelerated (or activated) polymerization, where impurities or purposefully added initiators are involved in the reaction; or, by the classic thermal polymerization, where only heat is enough to initiate the reaction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3434–3445  相似文献   

14.
A novel benzoxazine‐containing benzimidazole moiety (P‐PABZ) was synthesized from 2‐(4‐aminophenyl)‐1H‐benzimidazole‐5‐amine and characterized. With the aid of differential scanning calorimetry and in situ Fourier transform infrared, we found the thermal polymerization of P‐PABZ in bulk started around 140 °C and its favored polymerization pathway. Compared to the benzoxazine derived from 4,4′‐diamine diphenyl methane (P‐MDA), P‐PABZ exhibited lower processing temperature, and the corresponding polymers had higher glass transition temperature and enhanced thermal stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Four novel A‐B condensation monomers containing an amine and a carboxylic acid function are described, along with their polymerization to give main chain aromatic poly(amide urea)s. The monomers, and the polymer structural unit, are N,N′‐diphenylurea derivatives. When comparing wholly aromatic polyamides, or aramids, with the poly(amide urea)s described herein, we find that the chemical resistance to hydrolysis of the later polymers increases and their thermal resistance is diminished due to the main chain urea groups, whereas their water uptake is not greatly modified. The most striking result of the new poly(amide urea)s is their outstanding mechanical resistance: their Young's modulus rises as high as 5.5 GPa and their tensile strengths as high as 170 MPa for unoriented films prepared at laboratory scale by casting. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5398–5407, 2007  相似文献   

16.
A fully bio‐based benzoxazine, 3‐furfuryl‐8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine (Bzf), has been prepared using guaiacol, furfurylamine, and paraformaldehyde as raw materials. Its chemical structure has been characterized by 1H and 13C NMR, FTIR, and elemental analysis. The polymerization behavior of Bzf in the presence of methyl p‐toluenesulfonate (PTSM) has been studied by FTIR and DSC, and the thermal stability of the cured resin has been evaluated by thermogravimetric analysis. It was found that PTSM is a good promoter that serves to avoid thermal decomposition of the bio‐based monomer during the curing process at high temperature. In contrast to the situation with neat Bzf, the presence of PTSM (5 mol % for Bzf) significantly improves the polymerization behaviors, including a decrease in the polymerization temperature from 240 to 174 °C, a shortening of the time required to reach the gel point on heating at 200 °C from 47 to 20 min, and an increase in the char yield of the cured resin from 53 to 62%. Moreover, these observed experimental results on the promoting effect of PTSM are interpreted in terms of several possible mechanistic schemes, which involve a catalytic effect on the dissociation of C? O bonds in both the coordination ring‐opening reaction and the rearrangement from a phenoxy structure to a phenolic structure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

18.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

19.
Three novel phosphonated methacrylate monomers have been synthesized and studied for use in dental applications. Two of the monomers were synthesized from the reactions of glycidyl methacrylate (GMA) with (diethoxy‐phosphoryl)‐acetic acid (monomer 1 ) and (2‐hydroxy‐ethyl)‐phosphonic acid dimethyl ester (monomer 2 ). These monomers showed high crosslinking tendencies during thermal bulk and solution polymerizations. The third monomer (monomer 3 ) was prepared by the reaction of bisphenol A diglycidylether (DER) with (diethoxy‐phosphoryl)‐acetic acid and subsequent conversion of the resulting diol to the methacrylate with methacryloyl chloride. The homopolymerization and copolymerization behaviors of the synthesized monomers were also investigated with glycerol dimethacrylate (GDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (bis‐GMA) using photodifferential scanning calorimetry at 40 °C using 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) as photoinitiator. Monomer 1 showed polymerization rate similar or greater than dimethacrylates studied here but with higher conversion. The maximum rate of polymerizations decreased in the following order: 1 ~TEGDMA>GDMA~bis‐GMA~ 3 > 2 . A synergistic effect in the rate of polymerization was observed during copolymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2290–2299, 2008  相似文献   

20.
We report our work for preparing cross‐linked polyimide via a series of imide functional benzoxazine resins as precursors. The structures of synthesized monomers have been confirmed by 1H NMR and FT‐IR. Among this class of benzoxazine monomers, the ortho‐imide functional benzoxazine resins show useful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross‐linked polyimides based on ortho‐imide functional benzoxazine, an additional route is adopted to form a more thermally stable cross‐linked polybenzoxazole with the release of carbon dioxide. The ortho‐imide functional benzoxazine resins show the possibility to form high performance and even super high performance thermosets with low cost and easy processability. The thermal properties are evaluated by DSC and TGA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1330–1338  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号