首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The autocatalytic thermal polymerization behavior of three benzoxazine monomers containing carboxylic acid functionalities is reported. Several mixtures of these carboxylic monomers and 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine were prepared and their thermal polymerization behavior was analyzed by differential scanning calorimetry. The acid character of these reactive monomers increases the concentration of oxonium species, thus catalyzing the benzoxazine ring opening reaction. In this way the polymerization temperature decreased by as much as 100 °C in some cases. The existence of decarboxylation processes at high temperatures has been established by FTIR‐ATR and related to the increase in thermal stability observed by TGA in some cases. A relationship between the presence of carboxylic groups in the resulting materials and their flame retardancy behavior has also been established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6091–6101, 2008  相似文献   

2.
A benzoxazine compound with a maleimide group, 3‐phenyl‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (HPM‐Ba), was prepared from N‐(4‐hydroxyphenyl)maleimide, formaldehyde, and aniline. The chemical structure of HBM‐Ba was identified by FT‐IR, 1H‐NMR, and elemental analysis. HPM‐Ba showed a melting point of 52–55 °C and good solubility in common organic solvents. HPM‐Ba showed a two‐stage process of thermal polymerization. The first stage arose from the polymerization of maleimide groups, and the second one was the ring‐opening reaction of benzoxazine groups. Fusible polymaleimides with a Tg of around 100 °C could be obtained by thermally polymerizing HPM‐Ba at 130 °C. Further polymerizing the polymaleimides at 240 °C resulted in a completely cured resin showing a Tg at 204 °C. Good thermal stability and self‐extinguishing behavior was observed with the cured polybenzoxazine resins. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5954–5963, 2004  相似文献   

3.
Cationic ring opening polymerization at a lower temperature range/faster polymerization than ordinary benzoxazine resins has been achieved without added initiators or catalysts via liquid crystalline (LC) benzoxazine resins. Faster polymerization is observed even above the liquid crystal forming temperature. The FTIR spectra show that opening of the oxazine ring occurs even at 110 °C generating phenolic groups that auto‐catalyzed the cationic polymerization of the monomer increasing the rate of polymerization. The newly formed H‐bonds inhibit the formation of LC phases after polymerization. Some of the monomers show nematic LC transitions upon cooling. None of them showed LC transitions during the heating cycle, exhibiting monotropic LC phases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5871–5881, 2009  相似文献   

4.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

5.
A diethylphosphonate‐containing benzoxazine compound (DEP‐Bz) to be used as a multi‐functional reaction agent for preparation of high performance polybenzoxazine thermosetting resins has been reported. The chemical structure of DEP‐Bz has been characterized with FTIR, 1H NMR, and elemental analysis. The phosphonate groups of DEP‐Bz could convert into phosphonic acid groups which could catalyze the ring‐opening addition reaction of benzoxazines, to demonstrate the thermally latent catalytic effect of DEP‐Bz on the polymerization of benzoxazine compounds. Moreover, DEP‐Bz could also serve as a reactive‐type modifier for polybenzoxazines and other thermosets. DEP‐Bz modified polybenzoxazine resins have shown relatively low reaction temperature (about 190 °C), high mechanical strength with a storage modulus of about 3.0 GPa, and high flame retardancy with a limit oxygen index of about 32. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3523–3530  相似文献   

6.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A novel benzoxazine‐containing benzimidazole moiety (P‐PABZ) was synthesized from 2‐(4‐aminophenyl)‐1H‐benzimidazole‐5‐amine and characterized. With the aid of differential scanning calorimetry and in situ Fourier transform infrared, we found the thermal polymerization of P‐PABZ in bulk started around 140 °C and its favored polymerization pathway. Compared to the benzoxazine derived from 4,4′‐diamine diphenyl methane (P‐MDA), P‐PABZ exhibited lower processing temperature, and the corresponding polymers had higher glass transition temperature and enhanced thermal stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Aside from their outstanding properties such as thermal and chemical stability and excellent mechanical performance, benzoxazines suffer from high polymerization temperatures. Isomeric mixtures of bifunctional benzoxazines based on resorcinol proved already to be highly reactive monomers enabling polymerizations at lower temperatures. This contribution describes the polymerization behavior of single benzoxazine isomers and furthermore the influence of different substituents at the aniline moiety on the curing temperature. Single isomers of bifunctional benzoxazines are now accessible in a straightforward one‐pot synthesis starting from resorcinol and the appropriate N‐phenyl functionalized aniline component. The asymmetric benzoxazine monomers bearing no (R‐a: Tpeak = 179 °C) or electron‐donating substituents in meta position to N (R‐3,5dma: Tpeak = 183 °C) succeed in lowering the polymerization temperature. Additionally, the impact of several initiating systems was studied resulting in a decrease of the polymerization temperature for all studied resorcinol derived benzoxazine isomers (down to 144 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1243–1251  相似文献   

9.
Nanomagnetite thermosets were obtained by thermally activated ring opening copolymerization of benzoxazine groups coated on the surface of the nanomagnetite with bare benzoxazine. For this purpose, carboxylic acid containing 1,3‐benzoxazine was synthesized and covalently bonded on magnetite nanoparticles by postcoating method. The average size of benzoxazine coated nanoparticles was 40–100 nm as determined by Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) measurements. The crystal structure of benzoxazine coated nanoparticles was shown to be magnetite by X‐ray diffraction (XRD) analysis. Thermally activated curing behavior of nanomagnetite‐benzoxazines has also been studied by differential scanning calorimetry (DSC). Magnetic and thermal properties of the cured samples were investigated. It was shown that the precursor nanomagnetite benzoxazine and cured samples exhibited typical ferromagnetic character with low coercivities between 1.5 and 2.5 Oe. The cured samples showed high thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6780–6788, 2008  相似文献   

10.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

11.
Novel mono‐ and difunctional aliphatic oxyalcohol‐based benzoxazines have been synthesized and characterized in detail. Molecular structures of the monomers were investigated by spectral analysis. The obtained benzoxazine monomers exhibit fluidic behavior, which makes them particularly useful for many applications compared to other traditional benzoxazines. Differential scanning calorimetry was used to monitor the thermal crosslinking behavior of synthesized monomers. Mono‐ and bifunctional benzoxazine monomers exhibited low curing exhothermic peak with the onset around 173 and 180 °C, respectively. Relatively, low ring‐opening polymerization temperature was due to the hydroxyl groups present in the structure of the monomers. The hydrogen bonding of hydroxyl groups may cause alignment of the monomers in the liquid state. Thermal stabilty of the polybenzoxazines was studied by thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

12.
A high‐molecular‐weight polymer (PBz) possessing reactive benzoxazine groups in the main chain was prepared through the Diels–Alder reaction using bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz) and bismaleimide (BMI) as monomers. The chemical structure of PBz is characterized with FTIR and 1H NMR. The polymer PBz was further thermally reacted with a high performance polymer (PBz‐R) through the ring‐opening addition reaction of benzoxazine groups and the addition reaction of maleimide groups. PBz‐R exhibit a high glass transition temperature of 242 °C, good thermal stability, high flame retardancy, high mechanical strength, and great flexibility. Another crosslinked polymer (PBz‐BR) curing from the mixture of BPA‐FBz and BMI was also prepared. The properties of PBz‐BR are also attractive but, however, not as good as what observed with PBz‐R. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6509–6517, 2008  相似文献   

13.
Soluble and thermally curable conducting high molecular weight polybenzoxazine precursors were prepared by oxidative polymerization 3‐phenyl‐3,4‐dihydro‐2H‐benzo[e][1,3] oxazine (P‐a) alone and in the presence of thiophene (Th) with ceric ammonium nitrate in acetonitrile. The structure of the precursors was confirmed by FTIR, 1H NMR, and DSC measurements, indicating the presence of a cyclic benzoxazine structure, together with small but varying amount of a ring opened phenolic structure. The resulting polymers exhibit conductivities around 10?2 S cm?1 and undergo thermal curing at various temperatures. Attempts to copolymerize P‐a with another electroactive monomer, pyrrole (Py), by a similar redox process were unsuccessful, which was attributed to the unfavourable oxidation potential of Py. The cured products exhibited high thermal stability but lower conductivity, than those of the precursors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 999–1006, 2007  相似文献   

14.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

15.
To evaluate the influence of the electronic effects on the polymerization temperature, we looked at several 3‐phenyl‐3,4‐dihydro‐2‐H‐1,3‐benzoxazine monomers with electron‐withdrawing or electron‐donating groups in the 6 and 4′ positions. The monomers were synthesized and characterized using different synthetic methods to achieve the best possible results. The thermal polymerization of these benzoxazine monomers was analyzed by differential scanning calorimetry, and the polymerization behavior and the polymer characteristics were related to the electronic character of the substituent and the polymerization mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3353–3366, 2008  相似文献   

16.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
In the present work, new classes of bio‐based polybenzoxazines were synthesized using eugenol as phenol source and furfurylamine and stearylamine as amine sources separately through solventless green synthetic process routes and were further reinforced with varying percentages (1, 3, 5, and 10 wt%) of silica (from rice husk) to attain hybrid composites. The molecular structure, cure behaviour, thermal stability, dielectric properties, and flame‐retardant behaviour of both benzoxazine monomers and benzoxazine composites were characterized using appropriate modern analytical techniques. The eugenol‐based benzoxazines synthesized using furfurylamine (FBz) and stearylamine (SBz) were cured at 223°C and 233°C, respectively. The differential scanning calorimetry (DSC) data reveal the glass transition temperatures (Tg) of FBz and SBz were 157°C and 132°C, respectively, and the maximum decomposition temperature (Tmax) as obtained from thermogravimetric analysis (TGA), were found to be 464°C and 398°C for FBz and SBz, respectively. The dielectric constants for FBz and SBz obtained at 1 MHz were 3.28 and 3.62, respectively. Furthermore, varying weight percentages (1, 3, 5, and 10 wt%) of 3‐mercaptopropyltrimethoxysilane (3‐MPTMS) functionalized bio‐silica reinforced the composite materials as evidenced by their improved thermal stability and lower dielectric constant. Data obtained from thermal and dielectric studies suggested that these polybenzoxazines could be used in the form of adhesives, sealants, and composites for high performance inter‐layer low‐k dielectric applications in microelectronics.  相似文献   

19.
A novel benzoxazine monomer containing a benzoxazole group was synthesized using a nonsolvent method and then named DAROH‐a. The structure of DAROH‐a was confirmed by FTIR, 1H NMR, elemental analysis, and mass spectrometry. The curing reaction activation energy was calculated at 140 kJ/mol. Its corresponding crosslinked polybenzoxazines, poly(DAROH‐a), displayed a higher glass transition temperature at 402 °C, a 9% weight loss at the said temperature, and a high char yield of 42 wt % (800 °C, in nitrogen). Moreover, the dielectric constants of poly(DAROH‐a) were low and changed only slightly at different temperatures. Furthermore, the dielectric constants and dielectric loss of poly(DAROH‐a) at the same frequency barely changed from room temperature to 150 °C. The photophysical properties of poly(DAROH‐a) film were also investigated. Poly(DAROH‐a) showed an absorption peak at 280 nm. The photoluminescent emission spectrum of poly(DAROH‐a) film displayed predominant emission peaks at 521 nm. It might have potential application as high‐performance materials because of its excellent dielectric constants stability and thermal stability under high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号