首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction Atom adsorption on transition metal surfaces has attracted special attention as a base for understanding the fundamental processes of oxidative catalysis. Particularly interesting is the adsorption and diffusion of oxygen on well-defined metal surfaces. An oxygen covered palladium surface, for example, plays a central role in several important reactions such as oxidation of carbon monoxide and ammonia. In particular, the (100), (111), (110) surfaces and the interactions with oxyge…  相似文献   

2.
本文应用第一性原理的密度泛函(DFT)方法,使用DMol3计算程序,对NO在Rh(100)和Rh(111)面上的吸附与分解进行量化计算,力图解决NO在Rh(100)和Rh(111)面上的优选吸附位、直接分解的过渡态和活化能等重要问题.  相似文献   

3.
Adsorption of carbon monoxide on Pd (210) and (510) stepped surfaces has been investigated by the extended London‐Eyring‐Polyani‐Sato method constructed using a five‐parameter Morse potential. Pd (210) and (510) stepped surfaces consist of terrace with (100) structure and step with (110) character. These results show that there exist common characteristics of CO adsorption on these two surfaces. At low coverage, CO adsorbs in twofold bridge site of the (100) terrace. The critical characteristics inherit that of CO molecule adsorbed in twofold bridge site of (100) original surface. When the coverage is increased, the top site of (110) step is occupied. The critical characteristics resemble that of CO molecule adsorbed in top site of (110) original surface. A number of new sites are exposed on the boundary regions, for example, the fivefold hollow site (H) of these two surfaces. There are stable adsorption sites at high coverage. Because of the different length of the (100) terrace, the (210) and (510) stepped surfaces have some different characteristics. First, CO is tilted adsorption on bridge site of terrace of (210), but perpendicular on terrace of (510) surface. Second, the bridge site (B1) where one Pd atom at the top of the step and the other at the bottom of the step is a stable adsorption site on (210), but the same type of site on Pd (510) surface is not. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
应用原子和表面簇合物相互作用的5参数Morse 势及由5参数Morse势组装推广的LEPS方法对H-W低指数表面吸附体系进行了研究, 并获得了全部临界点特性. 计算结果表明, 低覆盖度下, H原子优先吸附在W(100)面的内层吸附位二层桥位B', 获得156 meV的垂直振动频率, 随着覆盖度的增加, H原子稳定吸附在表层的五重洞位(二层顶位)、桥位及顶位. 内层吸附位的优先吸附, 对与其邻近的表面吸附位的临界点性质有一定影响. 在W(110)面上只存在三重洞位的稳定吸附态, 垂直振动频率为151 meV. 在W(111)面上存在三种稳定吸附态, 子表面吸附位H1, 桥位B'和顶位T, 分别获得104, 200, 259 meV的垂直振动频率. 在低覆盖度下, H原子优先吸附在子表面吸附位H1.  相似文献   

5.
李艳秋  刘淑萍  郝策  王泽新  邱介山 《化学学报》2009,67(23):2678-2684
应用原子与表面簇合物相互作用的五参数Morse势(5-MP)方法对氢原子在Ni(111)表面和次表面以及Ni(211), (533)台阶面进行了系统研究, 得到了氢原子在上述各面的吸附位、吸附几何、结合能和本征振动频率. 计算结果表明, 在Ni(111)面上, 氢原子优先吸附在三重位, 随着覆盖度的增加会吸附在次表面八面体位和四面体位. Ni(211), (533)的最优先吸附位都是四重位, 当氢原子的覆盖度增大时占据(111)平台的三重吸附位. 靠近台阶面的吸附位受台阶和平台高度的影响很大. 此外, 我们计算了氢原子在各表面的不同吸附位的扩散势垒, 获得氢原子在各表面的最低能量扩散通道.  相似文献   

6.
The kinetics of NO adsorption and dissociation on Pd(111) surfaces and the NO sticking coefficient (s(NO)) were probed by isothermal kinetic measurements between 300 and 525 K using a molecular beam instrument. NO dissociation and N2 productions were observed in the transient state from 425 K and above on Pd(111) surfaces with selective nitrogen production. Maximum nitrogen production was observed between 475 and 500 K. It was found that, at low temperatures, between 300 and 350 K, molecular adsorption occurs with a constant initial s(NO) of 0.5 until the Pd(111) surface is covered to about 70-80% by NO. Then s(NO) rapidly decreases with further increasing NO coverage, indicating typical precursor kinetics. The dynamic adsorption - desorption equilibrium on Pd(111) was probed in modulated beam experiments below 500 K. CO titration experiments after NO dosing indicate the diffusion of oxygen into the subsurface regions and beginning surface oxidation at > or = 475 K. Finally, we discuss the results with respect to the rate-limiting character of the different elementary steps of the reaction system.  相似文献   

7.
NO在氧预吸附Ir(100)表面吸附和解离的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理密度泛函理论和周期性平板模型研究了NO在O预吸附Ir(100)表面的吸附和解离, 并考察了预吸附的O对可能产物N2, N2O和NO2的选择性的影响. 优化得到反应过程中初态、 过渡态和末态的吸附构型, 并获得反应的势能面信息. 计算结果表明, NO在O预吸附表面最稳定的吸附位是桥位, 其次是顶位. 桥位和顶位的NO在表面存在两条解离通道, 即直接解离通道和由桥位和顶位扩散到平行空位, 继而发生N-O键断裂生成N原子和O原子的解离通道. 此分离机理与洁净表面上NO解离机理相同, 但后一种解离方式优于前一种, 是NO在表面上解离的主要通道. 预吸附的O原子在不同程度上抑制了NO的解离, 导致桥位和顶位NO解离互相竞争. 在O预吸附Ir(100)表面, N2气是唯一的产物, 不会有副产物N2O和NO2的生成, 与实验结果一致. 预吸附的O在N/O低覆盖度下几乎不影响N2气的生成, 但在较高覆盖度下则促进了N2气的生成.  相似文献   

8.
The adsorption and dissociation of carbon monoxide on Mo (110) surface is studied with density functional theory. The results at different sites (atop, short bridge, long bridge, and hollow) are presented. The hollow site is found to be the most stable adsorption site for CO. The CO molecule is found to adsorb in end-on configurations (alpha states) at high coverage and inclined configurations (beta states) at low coverage. The dissociation activation energy from beta states is found to be approximately 1 eV lower than from alpha state. The adsorption of dissociation products, C and O, on Mo(110) has also been studied. The most stable adsorption site for C and O is long bridge and hollow site, respectively. The adsorption of C and O at low coverage is, in general, stronger than at high coverage, which is partly responsible for the high reactivity of CO dissociation at low coverage, since the binding energy of CO is not very sensitive to the coverage.  相似文献   

9.
Adsorption and diffusion of carbon monoxide on Pd low‐index surfaces and missing‐row Pd (110) reconstructed surface have been investigated by the extended London–Eyring–Polyani–Sato (LEPS) method constructed by means of a five‐parameter Morse potential. All critical characteristics, such as adsorption site, adsorption geometry, binding energy, CO vibrational frequency have been obtained and compared with the experimental and theoretical data. On these surfaces, the stable adsorption sites of CO are changed with increasing CO coverage. On the missing‐row Pd (110) reconstructed surface, there are five stable adsorption sites: H1, H2 (H1 and H2 are threefold hollow sites on (111) subsurface), B (bridge site on the second layer), SB (short‐bridge site), and T (top site). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

12.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

13.
氧原子在Mo低指数表面及(211)高指数面上的吸附和振动   总被引:2,自引:2,他引:0  
刁兆玉  韩玲利  王泽新 《化学学报》2004,62(15):1397-1404,FJ02
应用原子和表面簇合物相互作用的5参数Morse势方法(5-MP)对O-Mo低指数表面体系及(211)高指数面体系进行了系统的研究,并获得了全部临界点特性,如吸附位、吸附几何、结合能、正则振动频率等,计算结果表明:在Mo(100)面,O原子吸附在四重洞位,随着覆盖度增加,(100)面发生缺行重构,膺式三重位为稳定吸附位;在Mo(110),(111)及(211)面,O原子均趋向于吸附在膺式三重位.  相似文献   

14.
采用密度泛函理论(DFT), 选取DMol3程序模块, 对噻吩在M(111) (M=Pd, Pt, Au)表面上的吸附行为进行了探讨. 通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken 电荷布居、差分电荷密度以及态密度的分析发现, 噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小. 吸附后, 噻吩在Au(111)面上的构型几乎保持不变, 最终通过S端倾斜吸附于top 位; 噻吩在Pd(111)及Pt(111)面上发生了折叠与变形, 环中氢原子向上翘起, 最终通过环平面平行吸附于hollow 位. 此外, 噻吩环吸附后芳香性遭到了破坏, 环中碳原子发生sp3杂化, 同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道, 这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

15.
IntroductionThe interaction of oxygen with iron in lowcoverageregimes is considered to be an important step in the for-mation of oxides in corrosion science and in Fisher-Tro-psch process for the synthesis of ammonia over the het-erogeneous catalysts[1]. …  相似文献   

16.
Using the plane-wave pseudopotential method within the density-functional theory with the generalized gradient approximation for exchange and correlation potential, we have calculated adsorption energies (E(ad)), diffusion barrier, and the first dissociation barrier (E(1)) for NH(3) on Ni and Pd surfaces. While the top site is found to be preferred for NH(3) adsorption on both Ni(111) and Pd(111), its calculated diffusion barrier is substantially higher for Pd(111) than for Ni(111). We also find that during the first dissociation step (NH(3)-->NH(2)+H), NH(2) moves from the top site to the nearest hollow site on Ni(111) and Pd(111) and on the stepped surfaces, Ni(211) and Pd(211), it moves from the initial top site at the step edge to the bridge site in the same atomic chain. Meanwhile H is found to occupy the hollow sites on all four surfaces. On Ni(111), E(1) is found to be 0.23 eV higher than E(ad), while at the step of Ni(211), E(1) and E(ad) are almost equal, suggesting that the probability for the molecule to dissociate is much on the step of Ni(211). In the case of Pd(211), however, we find that the dissociation barrier is much higher than E(ad). These trends are in qualitative agreement with the experimental finding that ammonia decomposition rate is much lower on Pd than on Ni.  相似文献   

17.
Rotational excitation of HD scattered from Cu(100), Pd(111), and Pd(111):H(D) was measured using molecular beam and quantum-state-specific laser spectroscopy techniques. Greater than 91% of the incident HD population was in the v = 0, J = 0 state. The final rotational distributions from Cu(100), Pd(111), and Pd(111):H(D) were compared for a HD beam at an incident energy of 74 meV. For all the three surfaces studied, rotationally inelastic scattering probabilities were large. We find that the final HD rotational distributions are remarkably similar for the three surfaces even though Pd(111) is very reactive to dissociative adsorption of HD whereas Cu(100) and Pd(111):H(D) are chemically inert.  相似文献   

18.
The adsorption of NO molecules on small Pdn (n = 1?6) clusters has been studied using first‐principles density‐functional theory. Three adsorption sites were considered: vertex (on–top), bridge, and hollow. Adsorption is strong, ranging from 2 to 3 eV. In all cases NO adsorbs in a bent configuration. Calculated shifts in N–O bond vibration frequencies (with anharmonic corrections) agree very well with available experimental data. In contrast to metallic Pd surfaces, adsorption of NO on palladium clusters causes considerable changes in geometry around adsorption site because palladium d‐orbitals rehybridize to maximize the overlap with NO orbitals (mainly the antibonding π*). Thus, the overall energetic effect of NO adsorption is the result of two competing processes: lowering of the total energy through tighter bonding with NO and rising the energy due to cluster deformation. The Pdn–NO bond creation is governed by electron transfer from Pd–d orbitals into the NO π*. As a result, the Pd cluster becomes locally demagnetized (with total magnetic moment of 1 μB located at Pd atoms not connected to NO) and the NO molecule is activated: the N–O bond length is increased and the vibration frequency is redshifted. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

19.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

20.
The adsorption and decomposition of NO have been investigated by using density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies and structures of NO on Ni(211) and Pd(211) surfaces with full-geometry optimization and compared them with the experimental data. The most favorite adsorption on both surfaces occurs at the bridge site parallel to step edge (sb), while the energy difference from the second favorite site of a threefold hollow site near step edge is less than 0.1 eV. Decomposition pathways have been investigated with transition state search. The decomposition pathway, where NO leans toward the step, is most probable for both surfaces. The overall activation energy for decomposition is 0.39 and 1.26 eV for Ni(211) and Pd(211), respectively. The present results clearly show that the NO molecules on Pd(211) are less activated than those on Ni(211). We have studied also reorganization of NO on Pd(211) at higher coverages up to 1/3 ML (monolayer) [three NO molecules in a (3 x 1) unit cell]. The site occupation is not in a sequential manner as the NO coverage is increased, and a reorganization of NO adsorbates occurs (the NO molecule at sb becomes tilting up at higher coverage), which can interpret the experimental data of Yates and co-workers very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号