首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we establish the existence and non‐existence of positive solutions for p‐Kirchhoff type problems with a parameter on without assuming the usual compactness conditions. We show that the p‐Kirchhoff type problems have at least one positive solution when the parameter is small, while the p‐Kirchhoff type problems have no positive solutions when the parameter is large. Our argument is based on variational methods, monotonicity methods, cut‐off functional techniques, and a priori estimates techniques. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
We establish existence and uniqueness of generalized solutions to the initial-boundary value problem corresponding to an Euler-Bernoulli beam model from mechanics. The governing partial differential equation is of order four and involves discontinuous, and even distributional, coefficients and right-hand side. The general problem is solved by application of functional analytic techniques to obtain estimates for the solutions to regularized problems. Finally, we prove coherence properties and provide a regularity analysis of the generalized solution.  相似文献   

3.
We consider a quasilinear parabolic boundary value problem, the elliptic part of which degenerates near the boundary. In order to solve this problem, we approximate it by a system of linear degenerate elliptic boundary value problems by means of semidiscretization with respect to time. We use the theory of degenerate elliptic operators and weighted Sobolev spaces to find a priori estimates for the solutions of the approximating problems. These solutions converge to a local solution, if the step size of the time-discretization goes to zero. It is worth pointing out that we do not require any growth conditions on the nonlinear coefficients and right-hand side, since we lire able to prove L∞ - estimates.  相似文献   

4.
In this article we investigate the existence of a solution to a semi-linear, elliptic, partial differential equation with distributional coefficients and data. The problem we consider is a generalization of the Lichnerowicz equation that one encounters in studying the constraint equations in general relativity. Our method for solving this problem consists of solving a net of regularized, semi-linear problems with data obtained by smoothing the original, distributional coefficients. In order to solve these regularized problems, we develop a priori L -bounds and sub- and super-solutions to apply a fixed point argument. We then show that the net of solutions obtained through this process satisfies certain decay estimates by determining estimates for the sub- and super-solutions and utilizing classical, a priori elliptic estimates. The estimates for this net of solutions allow us to regard this collection of functions as a solution in a Colombeau-type algebra. We motivate this Colombeau algebra framework by first solving an ill-posed critical exponent problem. To solve this ill-posed problem, we use a collection of smooth, “approximating” problems and then use the resulting sequence of solutions and a compactness argument to obtain a solution to the original problem. This approach is modeled after the more general Colombeau framework that we develop, and it conveys the potential that solutions in these abstract spaces have for obtaining classical solutions to ill-posed non-linear problems with irregular data.  相似文献   

5.
In this paper, we study stochastic aggregation properties of the financial model for the N‐asset price process whose dynamics is modeled by the weakly geometric Brownian motions with stochastic drifts. For the temporal evolution of stochastic components of drift coefficients, we employ a stochastic first‐order Cucker‐Smale model with additive noises. The asset price processes are weakly interacting via the stochastic components of drift coefficients. For the aggregation estimates, we use the macro‐micro decomposition of the fluctuations around the average process and show that the fluctuations around the average value satisfies a practical aggregation estimate over a time‐independent symmetric network topology so that we can control the differences of drift coefficients by tuning the coupling strength. We provide numerical examples and compare them with our analytical results. We also discuss some financial implications of our proposed model.  相似文献   

6.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
This is the second part of an article that is devoted to the theory of non‐linear initial boundary value problems. We consider coupled systems where each system is of higher order and of hyperbolic or parabolic type. Our goal is to characterize systematically all admissible couplings between systems of higher order and different type. By an admissible coupling we mean a condition that guarantees the existence, uniqueness and regularity of solutions to the respective initial boundary value problem. In part 1, we develop the underlying theory of linear hyperbolic and parabolic initial boundary value problems. Testing the PDEs with suitable functions we obtain a priori estimates for the respective solutions. In particular, we make use of the regularity theory for linear elliptic boundary value problems that was previously developed by the author. In part 2 at hand, we prove the local in time existence, uniqueness and regularity of solutions to the quasilinear initial boundary value problem (3.4) using the so‐called energy method. In the above sense the regularity assumptions (A6) and (A7) about the coefficients and right‐hand sides define the admissible couplings. In part 3, we extend the results of part 2 to non‐linear initial boundary value problems. In particular, the assumptions about the respective parameters correspond to the previous regularity assumptions and hence define the admissible couplings now. Moreover, we exploit the assumptions about the respective parameters for the case of two coupled systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This is the third part of an article that is devoted to the theory of non‐linear initial boundary value problems. We consider coupled systems where each system is of higher order and of hyperbolic or parabolic type. Our goal is to characterize systematically all admissible couplings between systems of higher order and different type. By an admissible coupling we mean a condition that guarantees the existence, uniqueness and regularity of solutions to the respective initial boundary value problem. In part 1, we develop the underlying theory of linear hyperbolic and parabolic initial boundary value problems. Testing the PDEs with suitable functions we obtain a priori estimates for the respective solutions. In particular, we make use of the regularity theory for linear elliptic boundary value problems that was previously developed by the author. In part 2, we prove the local in time existence, uniqueness and regularity of solutions to quasilinear initial boundary value problems using the so‐called energy method. In the above sense the regularity assumptions about the coefficients and right‐hand sides define the admissible couplings. In part 3 at hand, we extend the results of part 2 to the nonlinear initial boundary value problem (4.2). In particular, assumptions (B8) and (B9) about the respective parameters correspond to the previous regularity assumptions and hence define the admissible couplings now. Moreover, we exploit assumptions (B8) and (B9) for the case of two coupled systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we consider a mathematical model describing static elastic contact problems with the Hooke constitutive law and subdifferential boundary conditions. We treat boundary hemivariational inequalities which are weak formulations of contact problems. We establish existence and uniqueness of solutions to hemivariational inequalities. Using the notion of H-convergence of elasticity tensors we investigate the limit behavior of the sequence of solutions to hemivariational inequalities.  相似文献   

10.
In this article, we consider two‐grid finite element methods for solving semilinear interface problems in d space dimensions, for d = 2 or d = 3. We consider semilinear problems with discontinuous diffusion coefficients, which includes problems containing subcritical, critical, and supercritical nonlinearities. We establish basic quasioptimal a priori error estimates for Galerkin approximations. We then design a two‐grid algorithm consisting of a coarse grid solver for the original nonlinear problem, and a fine grid solver for a linearized problem. We analyze the quality of approximations generated by the algorithm and show that the coarse grid may be taken to have much larger elements than the fine grid, and yet one can still obtain approximation quality that is asymptotically as good as solving the original nonlinear problem on the fine mesh. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
This paper is concerned with a family of second‐order elliptic systems in divergence form with rapidly oscillating periodic coefficients. We initiate the study of homogenization and boundary layers for Neumann problems with first‐order oscillating boundary data. We identify the homogenized system and establish the sharp rate of convergence in L2 in dimension three or higher. Regularity estimates are also obtained for the homogenized boundary data in both Dirichlet and Neumann problems. The results are used to establish a higher‐order convergence rate for Neumann problems with nonoscillating data. © 2018 Wiley Periodicals, Inc.  相似文献   

12.
In this paper we consider a resolvent problem of the Stokes operator with some boundary condition in the half space, which is obtained as a model problem arising in evolution free boundary problems for viscous, incompressible fluid flow. We show standard resolvent estimates in the Lq framework (1 < q < ∞), applying some kernel estimates to concrete solution formulas. The Volevich trick in [21] plays a fundamental role in estimating solutions (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We derive residual‐based a posteriori error estimates of finite element method for linear wave equation with discontinuous coefficients in a two‐dimensional convex polygonal domain. A posteriori error estimates for both the space‐discrete case and for implicit fully discrete scheme are discussed in L(L2) norm. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates in conjunction with appropriate adaption of the elliptic reconstruction technique of continuous and discrete solutions. We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the L(L2) norm.  相似文献   

14.
We investigate a linear, fully coupled thermoelasticity problem for a highly heterogeneous, two‐phase medium. The medium in question consists of a connected matrix with disconnected, initially periodically distributed inclusions separated by a sharp interface undergoing an a priori known interface movement because of phase transformations. After transforming the moving geometry to an ? ‐periodic, fixed reference domain, we establish the well‐posedness of the model and derive a number of ? ‐independent a priori estimates. Via a two‐scale convergence argument, we then show that the ? ‐dependent solutions converge to solutions of a corresponding upscaled model with distributed time‐dependent microstructures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.  相似文献   

16.
We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted ??p‐penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such ??p‐penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
In this article (which is divided in three parts) we investigate the non‐linear initial boundary value problems (1.2) and (1.3). In both cases we consider coupled systems where each system is of higher order and of hyperbolic or parabolic type. Our goal is to characterize systematically all admissible couplings between systems of higher order and different type. By an admissible coupling we mean a condition that guarantees the existence, uniqueness and regularity of solutions to the respective initial boundary value problem. In part 1 at hand, we develop the underlying theory of linear hyperbolic and parabolic initial boundary value problems. Testing the PDEs with suitable functions we obtain a priori estimates for the respective solutions. In particular, we make use of the regularity theory for linear elliptic boundary value problems that was previously developed by the author. In part 2, we prove the local in time existence, uniqueness and regularity of solutions to the quasilinear initial boundary value problem (1.2) using the so‐called energy method. In the above sense, the regularity assumptions about the coefficients and right‐hand sides define the admissible couplings. In part 3, we extend the results of part 2 to the non‐linear initial boundary value problem (1.3). In particular, the assumptions about the respective parameters correspond to the previous regularity assumptions and hence define the admissible couplings now. Moreover, we exploit the assumptions about the respective parameters for the case of two coupled systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we suggest a new computational strategy for diffusion type problems with coefficients that may sharply change values and have a complicated distribution over the domain. We solve models, which approximate the coefficients, numerically and estimate the corresponding approximation errors by the a posteriori estimates of functional type. We show that the modelling error can be also explicitly calculated. This allows to obtain numerical solutions of complicated diffusion problems by solving much simpler problems that do not require full detailization of the structure of coefficients. Balancing modelling and discretization errors provides an economical way of getting an approximate solution with an a priori given accuracy. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We study a problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with smoothed Jaumann objective derivative. We prove the existence of an optimal solution yielding the minimum of a specified bounded lower semicontinuous quality functional. To establish the existence of an optimal solution, we use the topological approximation method for studying problems of hydrodynamics.  相似文献   

20.
In this paper,we focus on studying approximate solutions of damped oscillatory solutions of the compound KdV-Burgers equation and their error estimates.We employ the theory of planar dynamical systems to study traveling wave solutions of the compound KdV-Burgers equation.We obtain some global phase portraits under different parameter conditions as well as the existence of bounded traveling wave solutions.Furthermore,we investigate the relations between the behavior of bounded traveling wave solutions and the dissipation coefficient r of the equation.We obtain two critical values of r,and find that a bounded traveling wave appears as a kink profile solitary wave if |r| is greater than or equal to some critical value,while it appears as a damped oscillatory wave if |r| is less than some critical value.By means of analysis and the undetermined coefficients method,we find that the compound KdV-Burgers equation only has three kinds of bell profile solitary wave solutions without dissipation.Based on the above discussions and according to the evolution relations of orbits in the global phase portraits,we obtain all approximate damped oscillatory solutions by using the undetermined coefficients method.Finally,using the homogenization principle,we establish the integral equations reflecting the relations between exact solutions and approximate solutions of damped oscillatory solutions.Moreover,we also give the error estimates for these approximate solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号