首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The flow boiling heat transfer of water in a microchannel heat sink with variable initial vapor quality at the inlet is investigated. The stainless steel microchannel heat sink contains ten 640 × 2050 μm channels with a length of 120 mm; the wall roughness is 10 μm. The data on the local heat-transfer coefficient distribution in heat sink length are obtained in the range of mass fluxes from 30 to 90 kg/m2s, heat fluxes from 40 to 170 kW/m2, and vapor qualities from 0 to 1. The heat transfer instability associated with dry spots resulting from insufficient wetting of channel walls introduces substantial contribution to the heat transfer mechanism and leads to decreasing heat transfer in heat sink length downward the flow. The developed method for calculating the flow boiling heat transfer of water in a microchannel heat sink allows more accurate prediction of heat transfer drop than available methods.  相似文献   

2.
Boiling heat transfer in a refrigerant R 21 flow in a microchannel heat sink is studied. A stainless steel heat sink with a length of 120 mm contains ten microchannels with a size of 640×2050 μm at cross-section with a wall roughness of 10 μm. The local heat-transfer coefficient distribution along the heat sink length is obtained. The ranges of parameters are: mass flow from 68 to 172 kg/m2s, heat fluxes from 16 to 152 kW/m2, and vapor quality from 0 to 1. The maximum values of the heat transfer coefficient are observed at the inlet of microchannels. The heat transfer coefficients decrease substantially along the length of channels under high heat flux conditions and, on the contrary, change insignificantly under low heat flux condition. A comparison with the well-known models of flow boiling heat transfer is performed and the range of applicability is defined.  相似文献   

3.
D. Deng  Q. Huang  W. Wan  W. Zhou  Y. Lian 《实验传热》2013,26(6):811-832
Flow boiling pressure drop and flow instabilities of Ω-shaped reentrant copper micro-channels were experimentally explored. Tests were conducted in deionized water and ethanol at inlet subcoolings of 10°C and 40°C, mass fluxes of 125–300 kg/m2·s, and a wide range of heat fluxes and exit vapor qualities. The operational parameters effects, i.e., heat flux, mass flux, inlet subcooling, and coolants, on pressure drop and flow instabilities were systematically explored. The two-phase pressure drop of reentrant micro-channels were found to generally increase monotonically with increasing heat fluxes and exit vapor qualities. Nevertheless, the roles of mass flux and inlet subcooling were dependent on the test coolant.  相似文献   

4.
G. Arslan  N. Eskin 《实验传热》2015,28(5):430-445
In this study, condensation of pure refrigerant R134a vapor inside a smooth vertical tube was experimentally investigated. The test section was made of a copper tube with inside diameter of 7.52 mm and length of 1 m. Experimental tests were conducted for mass fluxes in the range of 20–175 kg/m2s with saturation pressure ranging between 5.8 and 7 bar. The effects of mass flux, saturation pressure, and temperature difference between the refrigerant and tube inner wall (ΔT) on the heat transfer performance were analyzed through experimental data. Obtained results showed that average condensation heat transfer coefficient decreases with increasing saturation pressure or temperature difference (ΔT). In addition, for the same temperature difference (ΔT), heat can be removed from the refrigerant at a higher rate at relatively low pressure values. Under the same operating conditions, it was shown that average condensation heat transfer coefficient increases as mass flux increases. Finally, the most widely used heat transfer coefficient correlations for condensation inside smooth tubes were analyzed through the experimental data. The best fit was obtained with Akers et al.'s (1959) correlation with an absolute mean deviation of 22.6%.  相似文献   

5.
Experimental studies on natural convection boiling of water in an internally heated narrow vertical annulus, with the liquid circulating through a cold leg forming a closed-loop thermo-siphon, have been carried out. The radius and aspect ratios of the annulus are 1.184 and 352, respectively. The experimental data, which consist of wall and liquid temperatures, liquid and vapor flow rates, and differential pressure across the test section, are recorded on a data logging system. The experiments have been performed for a constant heat flux of 15–35 kW/m2 from the startup period until the steady state to study the transient behavior of the system. The boiling and non-boiling zones in the annulus have been identified and presented graphically through the liquid and wall temperatures for the steady state. They have been also verified through the visual photographs of the flow patterns in the annulus. The flow is found to be oscillatory in nature with no particular trend. Although the experimental data seems to be scattered, but when analyzed for a short duration, they are found well within the ±3σ (three sigma). This confirms the quasi-steady-state condition of the system. The steady-state values of Reynolds number and liquid circulation rate come out to be 133.1–453.5 and 7.0–23.87 g/s, respectively, while the Nusselt number and heat transfer coefficient are 7.98–13.57 and 1433.57–2435.35 W/m2K, respectively. Mathematical correlations for liquid mass flow rates, heat transfer coefficient, Reynolds number, and Nusselt number have been developed and compared with the existing correlations, which are in good agreement.  相似文献   

6.
Experimental studies on heat transfer and fluid flow of water in a vertical annulus, circulating through a cold leg forming a closed loop thermo-siphon, have been carried out in this article. The annulus has a radius ratio (outer radius to inner radius) of 1.184 and aspect ratio (length to annular gap) equal to 352. The experiments were conducted for constant heat fluxes of 1, 2.5, 5, 7.5, 10, 12.5, and 15 kW/m2. Transient behavior during the heat-up period of the system until the steady-state condition is attained and discussed. Variation in the heat transfer coefficient and Nusselt number along the annulus height represent the developing boundary layer at the entrance and fully developed flow in the remaining length. A large drop in the differential pressure is experienced when the liquid is circulated through the flow meters, which restrict the flow due to their very small passages. Flow restriction causes mass accumulation and rise of pressure at the exit of the annulus. It also causes a decrease in liquid head in the cooling leg. An increase in the heat flux leads to an increase in the heat transfer coefficient and Nusselt number. As a result of the data analysis correlations for the average Nusselt number, Reynolds number and circulation rate have been developed in terms of the heat flux.  相似文献   

7.
L. X. Yang  A. Guo  D. Liu 《实验传热》2013,26(2):221-243
Accurate models for the onset of nucleate boiling, density of active nucleation sites (Na), bubble departure size (Dd), and departure frequency (fd) are essential to the success of computational fluid dynamics analysis of two-phase thermal-hydraulics involving subcooled flow boiling in nuclear reactor systems. This work presents an experimental study of subcooled flow boiling in a vertical upward narrow rectangular channel that mimics the flow passage in the plate fuel assembly of boiling water reactors. The experiments are conducted over a range of mass flux (G = 122–657 kg/m2s), inlet subcooling (ΔTsub = 4.7–33.3?C), and heat flux (q″ = 1.7–28.9 W/cm2). Based on the experimental data, empirical correlations are developed for the prediction of onset of nucleate boiling, Na, Dd, and fd for given flow conditions. These correlations are valid in the nucleate boiling regime when the wall superheat is less than 12°C and can be incorporated in the computational fluid dynamics codes to enable more precise simulation of subcooled flow boiling heat transfer and two-phase flow in nuclear energy applications.  相似文献   

8.
An experimental study of condensation heat transfer characteristics of flow inside horizontal micro-fin tubes is carried out using R410A, R22, and R32 as the test fluids. This study especially focuses on the influence of heat transfer area upon the condensation heat transfer coefficients. The test sections were made of double tubes using the counter-flow type; the refrigerants condensation inside the test tube enabled heat to exchange with cooling water that flows from the annular side. The saturation temperature and pressure of the refrigerants were measured at the inlet and outlet of the test sections to defined state of refrigerants, and the surface temperatures of the tube were measured. A differential pressure transducer directly measured the pressure drops in the test section. The heat transfer coefficients and pressure drops were calculated using the experimental data. The condensation heat transfer coefficient was measured at the saturation temperature of 48°C with mass fluxes of 50–380 kg/(m2s) and heat fluxes of 3–12 kW/m2. The values of experimental heat transfer coefficient results are compared with the predicted values from the existing correlations in the literature, and a new condensation heat transfer coefficient correlation is proposed.  相似文献   

9.
G. Arslan  N. Eskin 《实验传热》2013,26(6):707-720
In this study, condensation of pure refrigerant R134a vapor inside a vertical 18° helical microfin tube was experimentally investigated. Tests were performed at saturation pressure of 5.7–5.9 bar with mass fluxes of 20–100 kg/m2s and heat fluxes of 1.7–5.3 kW/m2. The effects of mass flux and the temperature difference between the refrigerant and tube wall (ΔT) on the heat transfer performance were analyzed throughout experimental data. For experiments in which ΔT is more than 2.5°C, the average condensation Nusselt number showed a tendency to be independent from ΔT. Heat transfer enhancement ratio was found to be 1.59–1.71, which is always higher than the heat transfer area enhancement factor (1.55). Fins always act as a turbulence promoter in the given experimental data range. Finally, the most widely used heat transfer coefficient correlations for condensation inside microfin tubes were analyzed through the experimental data. Best fit was obtained with Yu and Koyama's correlation with an absolute mean deviation of 17% and Kedzierski and Goncalves's correlation with an absolute mean deviation of 19%.  相似文献   

10.
This article directly investigates the effect of a cooling medium's coolant temperature on the condensation of the refrigerant R-134a. The study presents an experimental investigation into condensation heat transfer, vapor quality, and pressure drop of R-134a flowing through a commercial annular helicoidal pipe under the severe climatic conditions of a Kuwait summer. The quality of the refrigerant is calculated using the temperature and pressure obtained from the experiment. Measurements were performed for refrigerant mass fluxes ranging from 50 to 650 kg/m2s, with a cooling water flow Reynolds number range of 950 to 15,000 at a fixed gas saturation temperature of 42°C and cooling wall temperatures of 5°C, 10°C, and 20°C. The data shows that with an increase of refrigerant mass flux, the overall condensation heat transfer coefficients of R-134a increased, and the pressure drops also increased. However, with the increase of mass flux of cooling water, the refrigerant-side heat transfer coefficients decreased. Using low mass flux in a helicoidal tube improves the heat transfer coefficient. Furthermore, selecting low wall temperature for the cooling medium gives a higher refrigerant-side heat transfer coefficient.  相似文献   

11.
A vertical cylinder was applied as a heat source into a water pool; the vibrations were imposed into the heater with different heat fluxes, and the frequencies were adjusted at 10, 15, 20, and 25 Hz. An imaging system was employed to observe the produced bubbles around the cylindrical heat source. The results showed that the boiling heat transfer was enhanced under the vibrations with a shorter transient process, and the wall temperature also decreased. The best enhancement ratio was achieved at the frequency of 25 Hz and a heat flux value of 30 kW/m2 as a consequence of imposed vibrations.  相似文献   

12.
Spray cooling is an effective tool to dissipate high heat fluxes from hot surfaces. This article thoroughly investigates the effect of thickness of a hot stainless steel plate on the cooling time, cooling rate, heat flux, and heat transfer coefficient under constant mass flow rate maintained at 1 MPa using water as the coolant. Cylindrical samples of stainless steel with constant diameter (D = 25 mm) and thickness (δ = 7.5, 12, 16.5, and 21 mm) were used in the present study. Critical droplet diameter to achieve an ultra-fast cooling rate of 300°C/s was estimated by using an analytical model for samples of varying thicknesses. The analytical model (one side spray cooling) showed good agreement with experimental results with a relative error of 3.2% in the plate thickness range of 1–12 mm. An increasing trend in maximum heat flux was found with increasing thickness of the plate. Maximum heat flux as high as 1,800 kW/m2 was achieved for a 21-mm-thick sample. Heat transfer coefficients in the range 0.092–96.24 kW/m2K, 0.111–98.9 kW/m2K, 0.074–63.4 kW/m2K, and 0.127–55.63 kW/m2K were reported for sample of varying thicknesses in the present study. Limited published work is available with reference to water spray cooling dynamics and thickness of stainless steel plate. Therefore, the present study focuses on the correlation between the thickness of the plate and spray dynamics of water spray cooling.  相似文献   

13.
The two-phase heat transfer coefficients of R404A and R134a in a smooth tube of 7.49-mm inner diameter were experimentally investigated at low heat and mass flux conditions. The test section is a 10-m-long counter-flow horizontal double-tube heat exchanger with refrigerant flow inside the tube and hot fluid in the annulus. The heat transfer coefficients along the length of the test section were measured experimentally under varied heat flux conditions between 4 and 18 kW m?2 and mass flux ranging between 57 and 102 kg m?2 s?1 (2.5 to 4.5 g s?1) for saturation temperatures of ?10°C, ?5°C, and 0°C. The saturation temperatures correspond to pressures of 4.4, 5.2, and 6.1 bar for R404A and 2.0, 2.4, and 3.0 bar for R134a, respectively. The results showed that under the tested conditions, the contribution of the nucleate boiling mechanism is predominant in the heat transfer coefficient throughout the flow boiling process. The Kattan–Thome–Favrat flow pattern maps confirm the occurrence of stratified and stratified-wavy flow patterns for all of the tested conditions. The average heat transfer coefficient of R404A is estimated to be 26 to 30% higher than that of R134a for the same saturation temperature.  相似文献   

14.
A. Trejo  C. Garcia 《实验传热》2013,26(1):97-112
Transient heat transfer of liquid methane under forced convection in a 1.8 mm × 1.8 mm asymmetrically heated square channel was investigated. This study is aimed at understanding the heat transfer behavior of cryogenic propellant in cooling channels of a regeneratively cooled rocket engine at the start-up condition. To simulate high heat load conditions representative of regeneratively cooled rocket engines, a high heat flux test facility with cryogenic liquid handing capabilities was developed at the Center for Space Exploration Technology Research. The time history of inlet and outlet fluid temperatures and test section channel wall temperatures were measured at high heat flux conditions (from 1.19 to 3.80 MW/m2) and a Reynolds number (Re) range of 1.88 × 105 to 3.45 × 105. The measured wall temperature data point toward possible film boiling within the test section during certain tests, particularly with higher heat fluxes and lower Reynolds number conditions that resulted in higher wall temperatures. The transient average Nusselt numbers (NuL) of the channel obtained from the experimental measurements are lower than those calculated from the Sieder–Tate correlation (NuO); however, the ratio (NuL/NuO) increases with the increase in Reynolds number. The ratio is around 0.25 at the lower end of Re and then increases to 0.7 at the maximum Re studied in the present investigation.  相似文献   

15.
In this paper, the subcooled flow boiling heat transfer coefficient of pure water, water–ethanol mixture and pure ethanol is determined experimentally in horizontal rectangular channels for various parameters like heat flux, mass flux and channel inlet temperatures. Flow visualization is carried out using high speed camera. The bubble departure diameter, growth period and waiting period of bubbles are determined. Correlations are developed for subcooled flow boiling Nusselt number of water–ethanol mixture based on force balance approach and heat transfer approach. The parameters considered for correlation are grouped as dimensionless numbers by Buckingham π-theorem. The significance of each dimensionless number on heat transfer coefficient is discussed. The correlations developed for subcooled flow boiling heat transfer coefficient are validated with the experimental data. They are found to be in good agreement with the experimental data. It is found that the correlation based on force balance approach predicts the subcooled flow boiling Nusselt number well when compared with that of heat transfer approach correlation.  相似文献   

16.
The influence of nucleation on the flow boiling heat transfer coefficient of R-134a/R-290/R-600a refrigerant mixture is experimentally studied in a smooth horizontal tube of 12.7 mm diameter. The heat transfer coefficients are experimentally measured for stratified flow patterns under a varied heat flux condition; a condition found in the evaporator of refrigerators and deep freezers. The experiments are conducted in a counter-current heat exchanger test section. By regulating the flow rate and inlet temperature of acetone, which is the heating fluid flowing in the outer tube, a varied heat flux is provided to the refrigerant flowing in the inner tube. The refrigerant mass flow rate is fixed between 3 and 5 g s−1 and its inlet temperature between −8.59 and 5.33°C, which corresponds to a pressure of 3.2 to 5 bar. The significance of nucleate boiling prevailing in the above-mentioned evaporators is highlighted. The experimental heat transfer coefficients are also compared with well known heat transfer correlations.  相似文献   

17.
对于沸腾换热,一个主要的约束条件就是临界热流密度(Critical Heat Flux,简称CHF)。这个约束条件对沸腾换热量有一个最高值的限制。文中对矩形微槽道中的流动沸腾临界热流密度进行了实验研究。实验数据是在不同尺寸(0.15mm;0.4mm;1mm)微槽道中,在较大范围的面积质量流速和不同进口过冷度下,以去离子水为工质得到的。实验过程中发现,达到CHF时,靠近出口壁面温度会突然升高,此时传热效率迅速下降。实验数据分析结果表明:CHF随质量流量的增加而增加;进口过冷度对CHF没有明显影响;CHF随着出口干度的增加而降低。  相似文献   

18.
ABSTRACT

The present paper reports the experimental investigation of pool boiling heat transfer on multiscale functionalized copper surfaces. Multiscale functionalized surfaces are fabricated by employing the nano-second laser surface process (NLSP) technique. The heat transfer coefficients (HTCs) of functionalized surfaces are estimated experimentally by using water and acetone as pool liquid. Tests are performed at atmospheric pressure, and saturated pool boiling condition with heat flux varyies between 0 and 330 kW/m2. The maximum HTCs for functionalized surface and reference polished surface were found to be 41,500 W/m2K and 23,000 W/m2K, respectively, with water and 22,000 W/m2K and 14,000 W/m2K, respectively, with acetone.  相似文献   

19.
Pool boiling heat transfer performances of Cu-Al2O3-coated copper surfaces have been studied experimentally for its potential use in heat transfer applications. In the present study, a two-step electrochemical deposition method is examined. This method provides an easy control on surface properties such as porosity and coating thickness. The deposition method is studied carefully and responsible surface morphology parameters are reported. After performing the pool boiling experiments on coated surfaces with DI water, the maximum critical heat flux of 1800 kW/m2 and heat transfer coefficient of 193 kW/m2 K, which are 68% and 260% higher than that of bare surface, respectively.  相似文献   

20.
In this study, heat transfer coefficients and pressure drops of R-134a inside round and flat tubes are investigated experimentally with mass flux of 450, 550, and 650 kg m?2 s?1 at saturation temperatures of 35°, 40°, and 45°C. The effects of mass flux and saturation temperature on heat transfer coefficient and pressure drop are examined. The maximum enhancement factor and pressure drop penalty are obtained by flat tube (FT-2) up to 2.101 at 450 kg m?2 s?1 and 3.01 at 650 kg m?2 s?1, respectively. The correlation for flat tubes is proposed to predict the heat transfer coefficient within ±20% error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号