首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
(n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭英才  徐刚毅  何宇亮  刘明  李月霞 《物理学报》2000,49(12):2466-2471
采用常规等离子体增强化学气相沉积工艺,以高H2稀释的SiH4作为反应气体源和PH3作为磷原子的掺杂剂,在p型(100)单晶硅((p)c-Si)衬底上, 成功地生长了施主掺杂型纳米硅膜((n)nc-Si:H),进而制备了(n)nc-Si:H/(p)c-Si异质结,并在230—420K温度范围内实验研究了该异质结的I-V特性.结果表明,(n)nc-Si:H/(p)c- Si异质结为一典型的突变异质结构,具有良好的温度稳定性和整流特性.正向偏压下 关键词: (n)nc-Si:H/(p)c-Si异质结 能带模型 电流输运机构 温度特性  相似文献   

2.
Superstrate p-i-n amorphous silicon thin-film (a-Si:H) solar cells are prepared on SnO2:F and ZnO:Al transparent conducting oxides (TCOs) in order to see the effect of TCO/p-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage Voc than cells prepared on SnO2:F. The presence of a thin microcrystalline p-type silicon layer (μc-Si:H) between ZnO:Al and p a-SiC:H plays a major role by causing an improvement in the fill factor as well as in Voc of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of the p-i interface, we could obtain a high Voc of 994 mV while keeping the fill factor (72.7%) and short circuit current density Jsc at the same level as for the cells on SnO2:F TCO. This high Voc value can be attributed to modification in the current transport in this region due to creation of a potential barrier.  相似文献   

3.
A new tunnel recombination junction is fabricated for n–i–p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p + recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n–i–p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 ·cm 2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage V oc = 1.4 V, which is nearly the sum of the V oc s of the two corresponding single cells, indicating no V oc losses at the tunnel recombination junction.  相似文献   

4.
The aim of this work is to analyze on the results of using of Al/Ag layer as a rear contact to improve the performance of heterojunction silicon solar cells. An analytical method is presented to extract the physical parameters of the equivalent circuit. These parameters are extracted to simulate the I(V) characteristic of heterojunction silicon solar cells, with Al and Al/Ag rear-metal contact. A good agreement between our analytical method and experimental measurement of electrical characteristics is obtained which show clearly how the Al/Ag rear contact can improve the characteristics of silicon solar cells. The influence of the rear-metal contact on the performance of the c-Si(p)-based bifacial HIT solar cell, i.e., the ZnO/Al/a-Si:H(n)/a-Si:H(i)/c-Si(p)/metal solar cell, is investigated in detail by computer simulation using the AFORS-HET software. Accordingly, the design optimization of the bifacial HIT solar cells on c-Si(p) substrates is provided. These simulation show an optimal conversion efficiency of 23% when the rear-metal contact is perfectly ohmic.  相似文献   

5.
a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象   总被引:1,自引:0,他引:1       下载免费PDF全文
钟春良  耿魁伟  姚若河 《物理学报》2010,59(9):6538-6544
通过异质结界面分析与 AMPS 模拟计算研究了 a-Si:H/c-Si 异质结太阳电池在低温工作、a-Si:H 层低掺杂、高价带补偿以及高界面态时光态 J-V 曲线出现 S-Shape 现象的物理过程,总结了 S-Shape 现象的物理原因.分析结果表明,当空穴输运受到界面势垒的限制时,空穴在 c-Si 界面附近聚集,能带重新分配,c-Si 耗尽区的电场减小,更多的电子从 c-Si 准中性区反转至 c-Si 界面及耗尽区与空穴复合,复合速率显著增大,光电流的损失显著增大,光态 J-V< 关键词: 模拟 异质结太阳电池 a-Si:H/c-Si 异质结  相似文献   

6.
Thin films of hydrogenated amorphous silicon (a-Si:H) were annealed using CO2 laser radiation (λ=10.6 μm). Changes of optical properties of the treated a-Si:H were investigated using optical transmittance spectroscopy and the angular distribution of intensity of reflected radiation (ADIRR). The CO2 laser annealing influences the spectral characteristics of the real part of refractive index n and absorption coefficient α of light in a-Si:H. This treatment increases the n and α values as well as the Urbach energy of a-Si:H. Simultaneously it decreases the optical energy gap of this material. The changes of optical parameters at the interfaces of a-Si:H–glass substrate and a-Si:H–air were established.  相似文献   

7.
We have made theoretical studies on the limitation of the open-circuit voltageV oc of a hydrogenated amorphous silicon (a-Si:H) p-i-n type solar cell. The effects of the tail states in the a-Si:H i layer and of the interface recombination are discussed in detail. The opencircuit voltage increases when the distribution of the tail states is sharp and/or the capture cross sections of these states are small. This is because the recombination rate of photogenerated carriers and/or the density of space charge due to trapped carriers in these states become low in these conditions. These effects of the tail states on the value ofV oc become pronounced when the built-in potential of the p-i-n junction is high. The decrease in the effective recombination velocity of carriers at the p/i and n/i interfaces results in an increase ofV oc. This increase becomes remarkable when the effects of the tail states on the value ofV oc are small. Both the sharp distribution of tail states and the small value of the interface recombination velocity are necessary to increase considerably the value ofV oc. We show the conditions of the material parameters necessary to obtain an open-circuit voltage of 1.0 V.  相似文献   

8.
A metal–insulator–semiconductor structure device with Ge nanocrystals in SiO2 was synthesized and the electrical characteristics were investigated. Capacitance–voltage (C–V) curves show hysteresis and the measurements indicate that the device has charge storage effects and stores more holes than electrons. For decreasing measurement frequencies from 1 MHz to 500 Hz, both branches of the C–V hysteresis shift in the positive voltage direction. The slope of the left flank of the C–V hysteresis curve becomes stretched out with decreasing frequency. The slope of the right one appears frequency independent, while there is a small hump/step on the right flank of the C–V hysteresis curve for the lower frequency cases (500 Hz and 1 kHz). The role of Si/SiO2 interface states is discussed.  相似文献   

9.
《Current Applied Physics》2015,15(10):1168-1172
We study the effect of ultra-thin oxide (SiOx) layers inserted at the interfaces of silicon heterojunction (SHJ) solar cells on their open-circuit voltage (VOC). The SiOx layers can be easily formed by dipping c-Si into oxidant such as hydrogen peroxide (H2O2) and nitric acid (HNO3). We confirm the prevention of the undesirable epitaxial growth of Si layers during the deposition of a-Si films by the insertion of the ultra-thin SiOx layers. The formation of the SiOx layers by H2O2 leads to better effective minority carrier lifetime (τeff) and VOC than the case of using HNO3. c-Si with the ultra-thin SiOx layers formed by H2O2 dipping, prior to deposition of a-Si passivation layers, can have high implied VOC of up to ∼0.714 V.  相似文献   

10.
Preparation of p-type hydrogenated microcrystalline silicon oxide thin films (p-μc-Si1−xOx:H) by 13.56 MHz RF-PECVD method for use as a p-layer of hetero-junction μc-Si:H solar cells is presented. We investigated effects of wide-gap p-μc-Si1−xOx:H layer on the performance of hetero-junction μc-Si:H solar cells under various light intensity. We observed that a wide-gap p-μc-Si1−xOx:H was effective in improving the open-circuit voltage (Voc) of the solar cells. We also confirmed that the Voc logarithmically increased with increasing light intensity, and the enhancement of Voc became larger with increasing band gap of p-layer. These results indicate that wide-gap p-μc-Si1−xOx:H is a promising material for use as window layer in hetero-junction μc-Si:H solar cells.  相似文献   

11.
Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG (Edge-defined Film-fed-Growth) silicon substrates.The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.  相似文献   

12.
张磊  沈鸿烈  岳之浩  江丰  吴天如  潘园园 《中国物理 B》2013,22(1):16803-016803
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot-wire chemical vapour deposition. The effect of the doping concentration of emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.  相似文献   

13.
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H2/(Ar + H2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T  85% for visible light including all reflection losses) and excellent electrical properties (ρ = 2.7 × 10−4 Ω · cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering properties separately. The microcrystalline silicon (μc-Si:H)-based p–i–n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p–i–n μc-Si solar cell efficiency of 7.78%.  相似文献   

14.
A theoretical model for describing the bias-dependent transient and steady-state behavior of dark current in hydrogenated amorphous silicon (a-Si:H) pin photodiode has been developed. An analytical expression for the bias-dependent steady-state thermal generation current is derived by solving the continuity equations for both electrons and holes. The model for describing transient dark current in a-Si:H pin photodiode is developed by considering the depletion of electrons from the i-layer and carrier injection through pi interface. For photodiodes that have very good junction properties, the high initial dark current decreases with time monotonously and reaches a plateau. However, in case of poor junctions, the injection current can be the dominating mechanism for transient leakage current at relatively high biases, the dark current decays initially and then rises to a steady-state value. The proposed physics-based dark current model is compared with published experimental results on several photodiodes. The comparison of the model with the experimental data allows an estimate of active dopant concentration in the p-layer and the defect density in the midgap of i-layer.  相似文献   

15.
The cross-sections for formation of isomeric pair, 75Gem(σm) and 75Geg(σg), through 76Ge(n, 2n), 75As(n, p) and 78Se(n, α) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, α) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, αn) reactions. The higher values of σm relative to σg reveal that the transitions of the excited 75Ge from higher energy levels to metastable state (7+/2) are favored as compared to unstable ground state (1/2). The present values of cross sections for formation of 75Gem,g through (n, 2n) and (n, α) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.  相似文献   

16.
Amorphous hydrogenated silicon (a-Si:H) belongs still to most promising types of semiconductors for its utilization in fabrication of TFTs and thin film solar cell technology due to corresponding cheap a-Si:H-based device production in comparison with, e.g. crystalline silicon (c-Si) technologies. The contribution deals with both two important modes of preparation of very-thin and ultra-thin silicon dioxide films in the surface region of a-Si:H semiconductor (oxygen plasma sources and liquid chemical methods) and electrical, optical and structural properties of produced oxide/semiconductor structures, respectively. Dominant aim is focused on investigation of oxide/semiconductor interface properties and their comparison and evaluation from view of utilization of used technological modes in the nanotechnological industry. Following three basic types of oxygen plasma sources were used for the first time in our laboratories for treatments of surfaces of a-Si:H substrates: (i) inductively coupled plasma in connection with its applying at plasma anodic oxidation; (ii) rf plasma as the source of positive oxygen ions for plasma immersion ion implantation process; (iii) dielectric barrier discharge ignited at high pressures.The liquid chemical manner of formation SiO2/a-Si:H structures uses 68 wt% nitric acid aqueous solutions (i.e., azeotropic mixture with water). Their application in crystalline Si technologies has been presented with excellent results in the formation of ultra-thin SiO2/c-Si structures [H. Kobayashi, M. Asuha, H.I. Takahashi, J. Appl. Phys. 94 (2003) 7328].Passivation of surface and interface states by liquid cyanide treatment is additional original technique applied after (or before) formation of almost all formed thin film/a-Si:H structures. Passivation process should be used if high-quality electronical parameters of devices can be reached.  相似文献   

17.
a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化   总被引:4,自引:0,他引:4       下载免费PDF全文
采用AFORS-HET数值模拟软件,对不同带隙的薄膜硅材料在a-Si(n)/c-Si(p)异质结太阳电池上的背场效果进行了模拟,分析了影响背场效果的原因,得到了薄膜硅背场在a-Si(n)/c-Si(p)异质结太阳电池上的适用条件为薄膜硅材料是带隙16 eV,硼掺杂浓度在1018cm-3以上的微晶硅材料,其最佳厚度在5nm左右. 这种背场从工艺上易于实现,并且,与常用的Al扩散背场相比,在相同的掺杂浓度下,电池效率可以大大提高. 关键词: 薄膜硅 背场 硅异质结太阳电池  相似文献   

18.
非晶/微晶相变域硅薄膜及其太阳能电池   总被引:1,自引:0,他引:1       下载免费PDF全文
采用甚高频等离子体增强化学气相沉积(VHF-PECVD)法,成功制备出从非晶到微晶过渡区 域的硅薄膜. 样品的微结构、光电特性及光致变化的测量结果表明这些处于相变域的硅薄膜 兼具非晶硅优良的光电性质和微晶硅的稳定性. 用这种两相结构的材料作为本征层制备了p- i-n太阳能电池,并测量了其稳定性. 结果在AM15(100mW/cm2) 的光强下曝光 800—5000min后,开路电压略有升高,转换效率仅衰退了29%. 关键词: 相变域硅薄膜 光电特性 太阳能电池  相似文献   

19.
We present back‐contacted amorphous/crystalline silicon heterojunction solar cells (IBC‐SHJ) on n‐type substrates with fill factors exceeding 78% and high current densities, the latter enabled by a SiNx /SiO2 passivated phosphorus‐diffused front surface field. Voc calculations based on carrier lifetime data of reference samples indicate that for the IBC architecture and the given amorphous silicon layer qualities an emitter buffer layer is crucial to reach a high Voc, as known for both‐side contacted silicon heterojunction solar cells. A back surface field buffer layer has a minor influence. We observe a boost in solar cell Voc of 40 mV and a simultaneous fill factor reduction introducing the buffer layer. The aperture‐area efficiency increases from 19.8 ± 0.4% to 20.2 ± 0.4%. Both, efficiencies and fill factors constitute a significant improvement over previously reported values. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The work reports on the fabrication of a p–n heterojunction structure comprised of polyaniline (PANI) and TiO2 nanoparticles. PANI was deposited by plasma enhanced polymerization on TiO2 thin film substrates. The structural and the crystalline properties demonstrated the coherence and the substantive interaction of the plasma polymerized PANI molecules with the TiO2 nanoparticle thin film. The UV–Vis studies of PANI/TiO2 thin film supported the internalization of PANI with TiO2 nanoparticles due to ππ* transition of the phenyl rings with the lone pair electrons () of the nitrogen atom present in the PANI molecules. The IV characteristics of the PANI/TiO2 heterojunction structure were obtained in the forward and the reverse biased at applied voltage ranging from −1 V to +1 V with a scan rate of 2 mV/s. The proficient current in the PANI/TiO2 heterojunction structure was attributed to the well penetration of PANI molecules into the pores of the TiO2 nanoparticle thin film. The IV characteristics ensured an efficient charge movement at the junction of PANI/TiO2 interface and thus, behaved as a typical ohmic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号