首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Z  Wang J  Hui L  Li L 《Electrophoresis》2012,33(4):661-665
Herein, we report an immobilized pH gradient (IPG) capillary isoelectric focusing-matrix-assisted laser desorption/ionization mass spectrometry (CIEF-MALDI MS) platform designed for the separation of complex neuropeptides. This platform features a poly(glycidyl methacrylate-divinylbenzene) (GMA-DVB)-based monolithic column for CIEF separation. Different from regular CIEF, carrier ampholytes are preimmobilized on the monolithic surface instead of being added to the sample. An off-line coupling of IPG-CIEF to MALDI MS has been established. Comparison with regular CIEF and optimizations are performed with bovine serum albumin tryptic peptides and extracted neuropeptide mixtures from crustacean Callinectes sapidus. It has been demonstrated that the separation of complex peptide mixtures in neutral and basic pH ranges can be achieved in less than 10 min with comparable separation efficiency with regular CIEF, while the MS signal is significantly enhanced when employing IPG-CIEF. Enhanced neuropeptide detection is also observed after coupling IPG-CIEF with MALDI MS.  相似文献   

2.
Chen J  Lee CS  Shen Y  Smith RD  Baehrecke EH 《Electrophoresis》2002,23(18):3143-3148
On-line combination of capillary isoelectric focusing (CIEF) with capillary reversed-phase liquid chromatography (CRPLC) is developed using a microinjector as the interface for performing two-dimensional (2-D) protein/peptide separations of complex protein mixtures. The focusing effect of CIEF not only contributes to a high-resolution protein/peptide separation, but also may permit the analysis of low-abundance proteins with a typical concentration factor of 50-100 times. The preparative capabilities of CIEF are much larger than most of capillary-based electrokinetic separation techniques since the entire capillary is initially filled with a solution containing proteins/peptides and carrier ampholytes for the creation of a pH gradient inside the capillary. The focused peptides which have a similar pI are coinjected into the second separation dimension and further resolved by their differences in hydrophobicity. The resolving power of combined CIEF-CRPLC system is demonstrated using the soluble fraction of Drosophila salivary glands taken from a period beginning before steroid-triggered programmed cell death and extending to its completion. The separation mechanisms of CIEF and CRPLC are completely orthogonal and the overall peak capacity is estimated to be around approximately 1800 over a run time of less than 8 h. Significant enhancement in the separation peak capacity can be realized by further increasing the number of CIEF fractions and/or slowing the solvent gradient in CRPLC, however, at the expense of overall analysis time. The results of our preliminary studies display significant differences in the separation profiles of peptide samples obtained from salivary glands of animals staged at the 6 and 12 h following puparium formation.  相似文献   

3.
Two capillary isoelectric focusing (CIEF) systems have first been optimized: one uses a bare silica capillary and 30% (v/v) of glycerol in the separation medium while the other uses a coated capillary and an aqueous background electrolyte. To perform permanent capillary coating, two neutral polymers have been compared: hydroxypropylcellulose (HPC) and polyvinylalcohol (PVA). HPC coating gave best results for electroosmotic flow (EOF) limitation on a wide pH range: as compared to a bare silica capillary, it allowed to decrease EOF by 96% at pH 7.2 after acidic and basic treatments, whereas PVA coating lead only to a 76% decrease. The glycerol CIEF system was more satisfying for the separation of model proteins classically used as pI markers. Finally, the use of "narrow pH cuts" of carrier ampholytes added to commercial ampholyte mixtures allowed increasing resolution up to a factor 2.4 at a chosen pH for the separation of pI markers and milk proteins.  相似文献   

4.
The impact of initial sample distribution on separation and focusing of analytes in a pH 3–11 gradient formed by 101 biprotic carrier ampholytes under concomitant electroosmotic displacement was studied by dynamic high-resolution computer simulation. Data obtained with application of the analytes mixed with the carrier ampholytes (as is customarily done), as a short zone within the initial carrier ampholyte zone, sandwiched between zones of carrier ampholytes, or introduced before or after the initial carrier ampholyte zone were compared. With sampling as a short zone within or adjacent to the carrier ampholytes, separation and focusing of analytes is shown to proceed as a cationic, anionic, or mixed process and separation of the analytes is predicted to be much faster than the separation of the carrier components. Thus, after the initial separation, analytes continue to separate and eventually reach their focusing locations. This is different to the double-peak approach to equilibrium that takes place when analytes and carrier ampholytes are applied as a homogenous mixture. Simulation data reveal that sample application between two zones of carrier ampholytes results in the formation of a pH gradient disturbance as the concentration of the carrier ampholytes within the fluid element initially occupied by the sample will be lower compared to the other parts of the gradient. As a consequence thereof, the properties of this region are sample matrix dependent, the pH gradient is flatter, and the region is likely to represent a conductance gap (hot spot). Simulation data suggest that sample placed at the anodic side or at the anodic end of the initial carrier ampholyte zone are the favorable configurations for capillary isoelectric focusing with electroosmotic zone mobilization.  相似文献   

5.
The transitional isoelectric focusing (IEF) process (the course of pH gradient formation by carrier ampholytes (CAs) and the correlation of the focusing time with CA concentration) were investigated using a whole-column detection capillary isoelectric focusing (CIEF) system. The transitional double-peak phenomenon in IEF was explained as a result of migration of protons from the anodic end and hydroxyl ions from the cathodic end into the separation channel and the higher electric field at both acidic and basic sides of the separation channel. It was observed that focusing times increase logarithmically with CA concentration under a constant applied voltage. The correlation of focusing time with CA concentration was explained by the dependence of the charge-transfer rate on the amount of charged CAs within the separation channel during focusing.  相似文献   

6.
When electrospray ionisation mass spectrometry (ESI-MS) is used on-line with capillary isoelectric focusing (CIEF), the presence of the carrier ampholytes creating the IEF pH gradient is not desirable. With the purpose of removing these ampholytes, we have developed a free-flow electrophoresis (FFE) device and coupled it to CIEF. The different parameters inherent to the resulting CIEF/FFE system were optimised using ultraviolet absorbance (UV) detection. The on-line coupling of this system with ESI-MS was successfully realised for three model proteins (myoglobin, carbonic anhydrase I and beta-lactoglobulin B).  相似文献   

7.
A protocol is described for monitoring the heterogeneity of end products of organic syntheses yielding amphoteric molecules containing two or more amino groups. This protocol was found to be a valuable aid in synthesis of carrier ampholytes for specific isoelectric focusing applications. This method does not depend on the ampholytes themselves to dictate the conditions under which they are analyzed. Carrier ampholytes have been found previously to be insoluble in picric acid and the insolubility property was not dependent upon the pI of individual ampholyte species. This insolubility property was exploited in the protocol. Immobilized pH gradients were used to focus the carrier ampholytes. Ampholytes were then visualized in situ by picric acid precipitation. The data shows that the protocol is useful for analyzing the results of chemical manipulations for enhancing the resolution of carrier ampholytes. A direct relationship was shown between carrier ampholyte heterogeneity as demonstrated by this protocol and the resolution of complex protein mixtures in isoelectric focusing gels. Picric acid formed visible precipitates with a variety of organic compounds which contained more than one amino group.  相似文献   

8.
CZE and CIEF separation systems, both developed previously for a quality control of two recombinant products of the major birch pollen allergen Bet v 1a of Betula verrucosa, were validated including aspects of the International Conference on Harmonization. One product contained carbamylated variants as impurities. Linearity of response was confirmed by Mandel's fitting test between 0.028 and 1.90 mg/mL for CZE and between 0.016 and 0.26 mg/mL for CIEF. Repeatability and intermediate precision were evaluated for the effective mobility (mu(eff)) in CZE, for relative mobilization time in CIEF and the peak area ratio of Bet v 1a. LOQ for Bet v 1a was between 10 and 23 microg/mL for both methods. Evaluation of robustness for CZE revealed susceptibility of micro(eff) of Bet v 1a to alterations in of buffer pH and separation temperature. Selectivity was impaired by an increase in temperature, pH, and buffer concentration. In addition, pH variations influenced the separation profile of impurities. For CIEF, the ratio of narrow pH range carrier ampholytes is the critical parameter to retain robustness. Results demonstrate the suitability of both separation systems to discriminate between nonmodified Bet v 1a and carbamylated variants in the selected recombinant allergen products.  相似文献   

9.
CIEF is a powerful separation tool utilized in the characterization and relative quantitation of therapeutic mAb charged isoforms. However, one CIEF method is not capable of separating all mAbs with high resolution and reproducibility. Optimization of sample composition and separation parameters is expected when developing a CIEF method for a specific mAb. This paper summarizes a root cause investigation into why a validated CIEF separation method for MAK33 (a type of IgG1) was no longer reproducible. In addition, this paper introduces the concept of sample focusing volume, which is defined as the actual capillary volume occupied by the sample after focusing and explains why there is less protein precipitation and aggregation when using narrow-range ampholytes than broad-range ampholytes. The use of DMSO as protein solubilizer and possible replacement of urea is also explored in this work. Finally, this paper demonstrates that a new optimized CIEF method can achieve over 100 reproducible high-resolution separations of MAK33 per neutral-coated capillary.  相似文献   

10.
We prepared a series of low-molecular-mass fluorescent ampholytes with narrow pI range. These fluorescein-based ampholytes are detection compatible with argon laser-induced fluorescence (LIF) detection. The selected properties, important for their routine use as fluorescent pI markers, were examined. The pI values of new fluorescein-based pI markers were determined by capillary isoelectric focusing (CIEF) using currently available low-molecular-mass pI markers for CIEF with photometric detection. The examples of CIEF with fluorometric detection of new compounds together with fluorescein isothiocyanate (FITC) derivatized proteins are presented.  相似文献   

11.
Sheng L  Pawliszyn J 《The Analyst》2002,127(9):1159-1163
Concentrating properties of the Capillary Isoelectric Focusing (CIEF) system with continuous whole-column-imaging detection were investigated for application as a second dimension in a comprehensive two-dimensional (2D) separation process. The concentration/separation/detection was completed within 4 min in a 300 microm inner diameter capillary. As the key to the successful coupling of CIEF to a first dimension separation, a novel interface was developed. A 10-port valve with two conditioning loops was used to perform both comprehensive collection and dialysis desalting of the first dimensional effluent, and as an interface coupling Micellar Electrokinetic Chromatography (MEKC) to CIEF. In the loop, salt and other unwanted first dimension effluent components were eliminated by dialysis and carrier ampholytes (CAs) were added. Peak broadening during the dialysis did not have significant impact on the CIEF separation because of its concentrating effect. Protein digests were first separated by MEKC followed by isoelectric point (pI) using whole-column-imaged CIEF. The dialysis interface allows general coupling of the whole-column-imaged CIEF to microscale separations.  相似文献   

12.
North RY  Vigh G 《Electrophoresis》2008,29(5):1077-1081
The operational pH value of a buffering membrane used in an isoelectric trapping separation is determined by installing the membrane as the separation membrane into a multicompartmental electrolyzer operated in the two-separation compartment configuration. A 3相似文献   

13.
Capillary separations of proteins using carrier ampholytes are performed between an anolyte and a catholyte of same pH (pH 3). Depending upon the concentration of carrier ampholytes used, two different separation processes take place. At a 10% concentration, the high-resolution separation of six model proteins is achieved, which can be described as a transient capillary isoelectric focusing (cIEF) system moving isotachophoretically. The isotachophoretic (ITP) behaviour of the system is evidenced by the influence of the catholyte concentration on the separation. The separation is neither pure cIEF nor pure cITP and the migration order of the proteins results from the influence of both their isolelectric points and their mobilities.  相似文献   

14.
Recent applications of capillary isoelectric focusing   总被引:2,自引:0,他引:2  
Kilár F 《Electrophoresis》2003,24(22-23):3908-3916
After the advent of capillary isoelectric focusing (CIEF) in the 80's several approaches have been developed in order to use the technique in routine analyses. The recent years showed an extensive increase in the applications of this technique employing its exceptionally high-resolution power. Methodological improvements, as well as hyphenation with other electrophoretic and chromatographic separation procedures, proved the versatility of CIEF in studies of clinically important proteins, recombinant product, cell lysates and other complex mixtures. The combination of CIEF with mass spectrometry detection is one of the major challenges for studying proteomics. This review collected the recent applications of CIEF including innovations in the experimental setup, remedies for the presence of salts in samples, calibration of the pH gradient, carrier ampholyte-free isoelectric focusing, the progress in micropreparation, two-dimensional separations, etc.  相似文献   

15.
Zhang Z  Wang J  Hui L  Li L 《Journal of chromatography. A》2011,1218(31):5336-5343
Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and comparison with conventional CIEF were carried out by using bovine serum albumin (BSA) tryptic peptides. It was shown that the MA-CIEF could provide more efficient, reliable and faster separation with improved sequence coverage when coupled to MALDI-FTMS. Analyses of orcokinin family neuropeptides from crabs Cancer borealis and Callinectes sapidus brain extracts have been conducted using the established MA-CIEF/MALDI-FTMS platform. Increased number of neuropeptides was observed with significantly enhanced MS signal in comparison with direct analysis by MALDI-FTMS. The results highlighted the potential of MA-CIEF as an efficient fractionation tool for coupling to MALDI MS for neuropeptide analysis.  相似文献   

16.
In the present work, we describe a collection system for the off-line coupling of capillary isoelectric focusing (CIEF) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. In this system, the capillary effluent is directly deposited in fractions onto the MALDI target via the use of a sheath liquid. The collected fractions are subsequently supplemented with matrix and further analysed by MALDI-TOF mass spectrometry for mass assignment. The experimental set-up includes a fiber optic based UV detector operating at 280 nm, which allows the study of the influence of the sheath liquid composition on the CIEF separation. The influence of the carrier ampholyte concentration on the protein MALDI spectra was also evaluated and the feasibility of the collection method was finally demonstrated with a mixture of four standard proteins.  相似文献   

17.
Capillary isoelectric focusing hyphenated with mass spectrometry detection, following the sequential injection of the carrier ampholytes and the sample zone, is highly efficient for the characterization of proteins. The main advantage of the sequential injection protocol is that ampholytes, with pH ranges, which are not supposed to cover the isoelectric points of the sample components, can be used for separation. The method then allows online mass spectrometry detection of separated analytes either in the absence (substances that have left the pH gradient) or in the presence of low‐level ampholytes (substances that are migrating within the pH gradient). The appearance of the substances within, or outside the pH gradient depends on, e.g., the composition of the ampholytes (broad or narrow pH range) or on the composition of electrolyte solutions. The experiments performed in coated capillaries (with polyvinyl alcohol or with polyacrylamide) show that the amount and the injection length of the ampholytes influence the length of the pH gradient formed in the capillary.  相似文献   

18.
The isoelectric points of many microbial cells lie within the pH range spanning from 1.5 to 4.5. In this work, we suggest a CIEF method for the separation of cells according to their isoelectric points in the pH range of 2–5. It includes the segmental injection of the sample pulse composed of the segment of the selected simple ampholytes, the segment of the bioanalytes and the segment of carrier ampholytes into fused silica capillaries dynamically modified by poly(ethylene glycole). This polymer dissolved in the catholyte, in the anolyte and in the injected sample pulse was used for a prevention of the bioanalyte adsorption on the capillary surface and for the reduction of the electroosmotic flow. Between each focusing run, the capillaries were washed with the mixture of acetone/ethanol to achieve the reproducible and efficient CIEF. In order to trace of pH gradients, low-molecular-mass pI markers were used. The mixed cultures of microorganisms, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Candida glabrata, Candida tropicalis, CCM 8223, Proteus vulgaris, Klebsiela pneumoniae, Staphylococcus aureus CCM 3953, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224 and Staphylococcus epidermidis CCM 4418, were focused and separated by the CIEF method suggested here. This CIEF method enables the separation and detection of the microbes from the mixed cultures within several minutes. The minimum detectable number of microbial cells was less than 103.  相似文献   

19.
《Journal of chromatography. A》1996,730(1-2):261-272
This paper describes an automated equipment for capillary displacement electrophoresis (isotachophoresis). The equipment employs the advantages of a separation channel with a nonuniform cross-section. The system works in a closed mode, the analytes are determined as anions in the examined arrangement. The pH gradient is within the range 4.4–11.0, the total voltage over the separation channel is from 150 V to 900 V at a constant current of 20 μA or 10 μA, respectively. Cetyltrimethylammoniumbromide and either hydroxypropylcellulose or hydroxypropylmethylcellulose are used in the leading electrolyte to control the electroosmotic flow.

The reproducibility and the minimum detectable concentrations are determined and calibration curves are measured using a model mixture of p1 markers and myoglobin as analytes and either low-molecular-mass ampholytec buffers or synthetic carrier ampholytes as spacers. Both Gaussian peaks and the square-wave zones were evaluated.  相似文献   


20.
X Z Wu  S K Sze  J Pawliszyn 《Electrophoresis》2001,22(18):3968-3971
Miniaturization of whole-column imaging capillary isoelectric focusing (CIEF) is discussed. A 1.2 cm capillary was used as a separation column for CIEF. The experimental results for the analysis of two pI markers and the protein myoglobin showed that good CIEF separation results could be obtained. Secondly, a light-emitting diode (LED) was used as the light source for the whole-column absorbance imaging detection. The focusing of both the pI markers and myoglobin were observed with the LED light source. The whole-column imaging CIEF instrument was simplified and miniaturized by the use of the LED. Further developments are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号