首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luqiao Qi  Yan Shi  Jinxi Liu  Cunfa Gao 《Meccanica》2018,53(11-12):3037-3045
The focus of this work is on a generalized two-dimensional problem of a crack moving in a piezoelectric solid subjected to uniform electrical load at infinity. The novel point includes that the electric field inside the crack is taken into account when polarization saturation region exists. Based on the extended Stroh formalism and complex function method, explicit expressions of both the stress fields in the solid and electric fields inside the crack are derived by using semi-permeable crack model, respectively. Effect of Maxwell stress along the crack surface is investigated and the results are illustrated graphically. It is shown that the moving speed of the crack cannot exceed the lowest bulk wave speed. It is also found that the medium properties inside the crack and surrounding the ferroelectric solid at infinity directly affect the Maxwell stress, and as a result the Maxwell stresses are remarkable and cannot be ignored under different electric load.  相似文献   

2.
Archive of Applied Mechanics - In this paper, a novel static condensation method is extended to mechanisms and structures with internal joints. The formulation is framed inside the static reduction...  相似文献   

3.
The discrete ordinates method (DOM/S n ) is implemented to investigate the high order scattering effects of absorbing–emitting–scattering grey gas media inside the three-dimensional cubical and rectangular furnaces. To validate the numerical method, the furnaces are considered first to be filled with non-scattering grey gases, and the results of the higher order approximations of the DOM show an excellent agreement compared with those available in the literature. The DOM is then extended to apply in the scattering media inside the furnaces, and the results of various scattering approaches such as out-scattering, iso-scattering, linear aniso-scattering and nonlinear aniso-scattering are obtained and presented in this paper.  相似文献   

4.
A coupled numerical scheme, based on modal expansions and boundary integral representations, is developed for treating propagation and scattering by dense arrays of impenetrable cylinders inside a waveguide. Numerical results are presented and discussed concerning reflection and transmission, as well as the wave details both inside and outside the array. The method is applied to water waves propagating over an array of vertical cylinders in constant depth extended all over the water column, operating as a porous breakwater unit in a periodic arrangement (segmented breakwater). Focusing on the reflection and transmission properties, a simplified model is also derived, based on Foldy–Lax theory. The latter provides an equivalent index of refraction of the medium representing the porous structure, modeled as an inclusion in the waveguide. Results obtained by the present fully coupled and approximate models are compared against experimental measurements, collected in wave tank, showing good agreement. The present analysis permits an efficient calculation of the properties of the examined structure, reducing the computational cost and supporting design and optimization studies.  相似文献   

5.
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat flow direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.  相似文献   

6.
A new method, which reduces various boundary value problems for a wave equation to initial value problems, is developed. The scalar Helmholtz equation for the one- and three-dimensional cases is considered. The method is extended to the case of nonlinear media. Its applications to the wave equation for different dimensions and various media are described. The source of the wave field may be situated outside or inside the layer occupied by the medium. Governing equations are obtained for cases when one can neglect the backward scattering. The operators that arise are reduced to integral operators. The problem of wave scattering by a weakly rough surface is briefly considered.  相似文献   

7.
The present paper investigates the capability of micromechanical material models to predict the ferroelectric behaviour of morphotropic PZT ceramics in a rate-independent approximation based on realistic microscopic material parameters. Starting point is a three-dimensional tetragonal model, which builds on the model of Pathak and McMeeking [2008. Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading. Journal of the Mechanics and Physics of Solids 56, 663-683]. Volume fractions of the crystallographic variants represent the domain structure inside the grains. Interactions between the grains are taken into account by means of a representative volume element of the grain compound. A simplified set of realistic microscopic material parameters of the lattice in terms of Young's modulus, Poisson's ratio, dielectric constant, and spontaneous strain and polarisation is derived from experimental data and theoretical results given in the literature. The simulation of the macroscopic remanent polarisation and strain response due to two load cases shows explicitly that the tetragonal model is not capable to reproduce the behaviour of morphotropic PZT. Therefore, the model is extended by the rhombohedral phase, allowing a mixture of both phases with varying quantities inside the grains. A comparison of our results with experimental data shows a remarkably good agreement, revealing the capability of the extended model.  相似文献   

8.
Hosseini  N.  Khoei  A. R. 《Transport in Porous Media》2021,139(1):109-129

One of the most popular models that has been applied to predict the fluid velocity inside the fracture with impermeable walls is the cubic law. It highlights that the mean flux along the fracture is proportional to the cubic of fracture aperture. However, for a fractured porous medium, the normal and tangential interface conditions between the fracture and porous matrix can change the velocity profile inside the fracture. In this paper, a correction factor is introduced for flow equation along the fracture by imposing the continuity of normal and tangential components of velocity at the interface between the fracture and porous matrix. As a result, the mean velocity inside the fracture depends not only on the fracture aperture, but also on a set of non-dimensional numbers, including the matrix porosity, the ratio of intrinsic permeability of fracture to that of matrix, the wall Reynolds number, and the ratio of normal velocity on one wall to the other. Finally, the introduced correction factor is employed within the extended finite element method, which is widely used for numerical simulation of fluid flow within the fractured porous media. Several numerical results are presented for the fluid flow through a specimen containing single fracture, in order to investigate the deviation from the cubic law in different case studies.

  相似文献   

9.
探讨了扩展有限单元法的具体实现过程,包括裂纹体几何结构的拓扑分析、广义节点的选取及详细的单元数值计算。并针对前文提出的扩展有限单元平衡方程的统一矩阵实现模式,提出了采用虚拟层合元的思想来处理被裂纹横贯单元的子域积分问题,自然地解决了原方法中由于特殊的位移插值场在裂纹两侧不连续造成的单元刚度阵求解困难。同时依托比较成熟的虚拟层合单元法,可以方便地考虑域内及裂纹面上分布载荷影响。此外,一、二维算例较高精度的数值结果验证了本文算法的有效性和精度。  相似文献   

10.
以四面体一六面体基本转换模板为基础,提出一系列具有伸缩性的扩展转换模板.可根据需要选择不同模板及其组合,将四面体分解为不同数量、不同密度过渡形式的六面体单元。这样,初始四面体网格不需要划分得很细,生成的六面体单元数量也可以通过采用不同规格的扩展转换模板而得到控制。提出了基于CAD几何造型的边界节点坐标修正方法.从而使边界网格更好地拟合几何模型边界。  相似文献   

11.
Paper presents a FE-analysis of shear localizations in granular bodies with a finite element method based on a hypoplastic constitutive law. The law can reproduce essential features of granular bodies in dependence on the void ratio, pressure level and deformation direction. To simulate the formation of a spontaneous shear zone inside of cohesionless sand during plane strain compression, a hypoplastic law was extended by polar and non-local terms. The effect of both models on the thickness of a shear zone was compared.  相似文献   

12.
Binary droplet collisions are of importance in a variety of practical applications comprising dispersed two-phase flows. In the present work we focus on the collision of miscible droplets, where one droplet is composed of a high viscous liquid and the other one is of lower viscosity. This kind of collisions take place in, for instance, spray drying processes when droplets with different solid content collide in recirculation zones. The aim of this paper is to investigate the details of the flow inside the colliding droplets. For this purpose, two prototype cases are considered, namely the collision of equal sized droplets and the collision between a small and highly viscous droplet and a bigger low viscous droplet. A new experimental method has been developed in order to visualize the penetration and mixing process of two colliding droplets, where a fluorescence marker is added to one liquid and the droplets are excited by a laser. The results show a delay in the coalescence which takes place during the initial stage of a collision of droplets with different viscosities. Direct Numerical Simulations based on the Volume-of-Fluid method are used to study these collisions and to allow for a more detailed inspection of the mixing process. The method is extended to consider a second liquid with a different viscosity. In order to reproduce the delay of coalescence, an algorithm for the temporal suppression of the coalescence is applied. A predictive simulation of the delay is not possible, because the extremely thin air gap separating the droplets cannot be resolved by the numerics. This approach is validated by comparison with experimental data. The results provide local field data of the flow inside the collision complex, showing in particular a pressure jump at the liquid–liquid interface although no surface tension is present. The detailed analysis of the terms in the momentum balance show that the pressure jump results from the viscosity jump at the liquid–liquid interface.  相似文献   

13.
A new type of tube is introduced that has a three-dimensional internally extended surface used to enhance convective heat transfer inside the tube. Results are presented from experimental investigations into heat transfer performance in seven copper tubes of about 13.5 mm I.D. with three-dimensional internally extended surfaces (3-DIESTs) varying in axial pitch, circumferential pitch, height, width, and fin arrangement. The heat transfer and pressure drop characteristics of ethylene glycol flowing in the 3-DIESTs were tested in the Re range 250–7000 and Pr range 60–90. The average Stanton number in the most superior 3-DIEST can be increased by about 2.8-fold in laminar flow and 4.5-fold in transitional and turbulent flow compared with that in the smooth tube. The corresponding friction factor is 1.7-fold as high in laminar flow and fourfold in transitional and turbulent flow inside the 3-DIEST compared to that inside a smooth tube. The correlations of heat transfer and friction factor are obtained separately in the different flow regions that can be used in practical design.  相似文献   

14.
Fracture analysis of a semi-permeable Yoffe-type interfacial crack propagating subsonically in magneto-electro-elastic(MEE) composites is presented based on the strip electromagnetic polarization saturation(SEMPS) model. The electro-magnetic fields inside the crack are considered under the semi-permeable boundary condition. Nonlinear effects near the interfacial crack tip are represented by different electro-magnetic saturation zones. Utilizing the extended Stroh's method, we derive the moving dislocation densities as well as intensity factor and energy release rate for Yoffe-type MEE interfacial crack. Numerical results through an iterative approach are presented to show the characteristics of fracturedominant parameters with respect to propagation velocity and boundary condition category. The fracture-dominant parameters under the semi-permeable boundary condition are lower than those under the impermeable one, which implies that the electro-magnetic fields in the crack gap can retard the propagation of MEE interfacial crack.  相似文献   

15.
The present investigation addresses non-Darcian effects on the buoyancy-induced heat transfer in a partially divided square enclosure with internal heat generation. The generalized model of the momentum equation, which is also known as the Forchheimer–Brinkman extended Darcy model, which takes into account boundary and inertia effects, was used in representing the fluid motion inside the porous layer. The local thermal equilibrium condition was assumed to be valid for the range of the thermophysical parameters considered in the present investigation. The transport equations were solved using the finite element formulation based on the Galerkin method of weighted residuals. The validity of the numerical code used was ascertained by comparing our results with previously published results. Results were obtained in terms of streamlines, isotherms, and Nusselt number for various geometrical parameters specifying the height and width of the partition. In addition, the effects of external and internal Rayleigh numbers and Darcy number were highlighted in the proposed study.  相似文献   

16.
A Finite Element Method in mixed Eulerian and Lagrangian formulation is developed to allow direct numerical simulations of dynamical interaction between an incompressible fluid and a hyper-elastic incompressible solid. A Fictitious Domain Method is applied so that the fluid is extended inside the deformable solid volume and the velocity field in the entire computational domain is resolved in an Eulerian framework. Solid motion, which is tracked in a Lagrangian framework, is imposed through the body force acting on the fluid within the solid boundaries. Solid stress smoothing on the Lagrangian mesh is performed with the Zienkiewicz–Zhu patch recovery method. High-order Gaussian integration quadratures over cut elements are used in order to avoid sub-meshing within elements in the Eulerian mesh that are intersected by the Lagrangian grid. The algorithm is implemented and verified in two spatial dimensions by comparing with the well validated simulations of solid deformation in a lid driven cavity and periodic elastic wall deformation driven by a time-dependent flow. It shows good agreement with the numerical results reported in the literature. In 3-D the method is validated against previously reported numerical simulations of 3-D rhythmically contracting alveolated ducts.  相似文献   

17.
In this paper we will consider scattering of elastic waves in a half space. The half space is an isotropic, linear and homogeneous medium except for a finite inhomogeneity. The T-matrix method (also called the “extended boundary condition method” or “null field approach”) is extended to derive expressions for the elastic field inside the half space and the surface field on the interface. The assumptions on the source that excites the half space are fairly weak. In the numerical applications found in this paper we assume a Rayleigh surface wave to be the incoming field, and we only compute the surface displacements. We make illustrations on some simple types of scatterers (spheres and spheroids; the latter ones can be arbitrarily oriented).  相似文献   

18.
Internal mixers are used extensively in industry for mixing the components of rubber compounds. In these operations, in order to achieve effective mixing, the mixer chamber is always partially filled. This inevitably results in the appearance of multiple free surfaces in flow fields inside rubber mixer chambers. Mathematical modelling of such a flow regime is not a simple task and requires a great deal of effort. Traditional free surface flow-modelling techniques, which are mainly based on the use of volume-of-fluid or pseudo-density approaches in an Eulerian framework, are not flexible enough to cope with this problem. In this paper we describe a new method for the numerical modelling of free surface flows. In this method the pseudo-density approach is extended to a special Lagrangian framework along the trajectories of the fluid particles. We show that the developed scheme can very effectively simulate viscoelastic free surface flows encountered in rubber-mixing processes.  相似文献   

19.
This study develops an extended unresolved CFD-DEM coupling method for simulation of the fluid–solid flow with non-spherical particles. The limitation of fluid grid size is discussed, by simulating the settling of a cylinder in a Newtonian fluid based on the resolved and unresolved CFD-DEM coupling method. Then, the calculation of porosity and the fluid–particle relative velocity based on the particle shape enlargement method for simulation of non-spherical particles is proposed. The availability of the particle shape enlargement method for the simulation of non-spherical particles with different sphericity is discussed in this work, by comparing it with the results from the equivalent diameter enlargement method. The limitation of the equivalent diameter enlargement method for non-spherical particles is revealed from the simulation results. Several typical cases are employed to elaborate and verify the extended unresolved CFD-DEM method based on particle shape enlargement method, by presenting a good consistency with the experimental results. It proves that the extended unresolved CFD-DEM method is suitable for different CFD grid size ratios, and consolidates that it is a universal calculation method for CFD-DEM coupling simulation.  相似文献   

20.
基于扩展有限元的应力强度因子的位移外推法   总被引:1,自引:0,他引:1  
周博  薛世峰 《力学与实践》2017,39(4):371-378
针对平面裂纹问题,阐述了扩展有限元法的单元位移模式、推导了扩展有限元法的控制方程、介绍了特殊单元的数值积分技术.基于最小二乘法,建立了应力强度因子位移外推法的计算公式.利用MATLAB编写计算程序,对平面裂纹问题用扩展有限元法进行了计算.基于扩展有限元法的计算结果,分别利用位移外推法和相互作用积分法,对平面裂纹的应力强度因子进行了计算.计算结果表明,位移外推法比相互作用积分法能更方便和准确地计算平面裂纹的应力强度因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号