首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
DEM与FEM动态耦合算法研究   总被引:1,自引:0,他引:1  
离散单元法作为一种有效的数值分析方法,能够模拟脆性材料的裂纹扩展及碎片飞散等破坏特性,但是无法从根本上克服计算效率低下的诟病;传统有限单元法具有计算高效稳定的优点,却难以描述脆性材料冲击破坏过程中连续体向非连续体的转化。本文首先提出一种基于罚函数法的改进型离散单元和有限单元耦合方法,以提高耦合分析精度。在此基础上提出了动态耦合算法:即在初始阶段,模型全部为有限单元,当局部即将发生破坏时,仅使即将发生破坏的有限单元及相邻单元自动转化为离散单元,在离散单元区域研究破坏问题。这种算法充分利用有限单元法计算高效的优点,同时最大限度克服了离散单元法计算效率的不足。最后,通过两个简单算例验证了改进型耦合算法和动态耦合算法的有效性。  相似文献   

2.
利用Somigliana公式及有限部积分的概念,导出含两平行平片裂纹三维有限体裂纹干扰问题的超奇异积分方程组,联合使用有限部积分与边界元法,建立了数值求解方法,为提高数值计算结果的精度,在裂纹前疝附近单元,采用平方根位移模型,并在此基础雌出直接计算应力强度因子的公式,最后计算若干典型例子裂纹前沿的应力强度因子。  相似文献   

3.
基于有限元计算网格,扩展有限单元法通过建立特殊的广义节点插值形式来描述含裂缝体的不连续位移场,避免了有限元法模拟裂缝时需要的网格重划分。进而,本文从虚功原理出发,在有限元法框架内完整地推导了能模拟宏观裂纹力学场的扩展有限元法实现公式,在理论上更全面地考虑了内部裂纹面上分布外载荷及缝内粘连材料刚度的影响,并提出了构建统一的扩展有限单元刚度阵形成模式,保证了与传统有限单元方式的协调一致。文中对方法的实现过程也做了详细阐述,给出了通用的计算公式,确保了算法的可行性。  相似文献   

4.
强化有限单元法将物理网格与数学网格分离开来,可以方便地描述非连续变形;粘聚区域模型是模拟断裂过程区作用最简单有效的方法,且可以避免裂纹尖端的应力奇异性.本文以平面问题为例,将强化有限单元法与粘聚区域模型相结合,利用富集数学节点描述任意粘聚裂纹扩展过程中的非连续变形问题,提出了裂纹扩展过程中数学节点富集和数学单元定义的方法.本文还导出了与平面4~8节点平面等参单元对应的8~16节点粘聚裂纹单元列武.最后,通过三点弯梁的裂纹扩展过程模拟验证了本文提出的粘聚裂纹扩展模拟方法的有效性.  相似文献   

5.
三维有限体平片裂纹的超奇异积分方程与边界元法   总被引:1,自引:2,他引:1  
秦太验  陈卫江 《力学学报》1997,29(4):481-485
利用Somigliana公式及有限部积分的概念,导出了含任意平片裂纹三维有限体问题的超奇异积分方程组,并联合使用有限部积分与边界元法,建立了数值求解方法.在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型,以提高数值结果的精度.最后计算了若干典型例子的应力强度因子.  相似文献   

6.
非连续变形分析和非规则节点处理是基于单元细划的粘聚裂纹扩展网格自适应模拟的关键。首先,利用强化有限单元法中数学单元和物理单元分离的特点,通过引入过渡单元,将适用于非连续变形描述的数学模式覆盖法和方便处理非规则节点的物理模式重构法结合,提出了强化有限单元法的统一关联法则,并导出了相应的单元列式。其次,基于数学裂纹尖端影响域和裂尖单元尺寸,提出了基于强化有限单元法的粘聚裂纹扩展过程模拟的h型网格自适应策略。最后,通过两个算例验证了本文方法的合理性和有效性。  相似文献   

7.
表面裂纹疲劳扩展的数值模拟   总被引:1,自引:1,他引:1  
建立了一种无形状约束的模拟表面裂纹在线弹性断裂力学条件下疲劳扩展的数值方法,并研究了表面疲劳裂纹形状演化和裂纹尖端应力强度因子(SIF)的分布特征。该方法以三维有限单元技术和Paris疲劳裂纹扩展规律为基础,并在裂纹扩展增量计算中考虑了裂纹闭合影响。本文第一部分主要介绍模拟三维疲劳裂纹扩展的数值方法的理论背景和相关的技术细节。着重分析和讨论基于三维有限单元法计算裂纹SIF所涉及的几个主要问题:裂纹尖端单元网格密度对估算精度的影响;自由表面的影响及其修正方法;裂纹尖端非正交单元网格的影响及修正方法。  相似文献   

8.
将三维热权函数法扩展为适用于表面力、体积力和温度载荷的通用权函数法(UWF).推导出以变分型积分方程表达的UWF法基本方程,从变分的角度,将求解三维热权函数法基本方程的多虚拟裂纹扩展法(MVCE)改造为可以适用于一般的变分型积分方程的一类新型数值方法--有限变分法(FVM).在FVM中可以引入无穷多种线性无关的局部变分模式,可以根据计算要求在求解域中插入任意多个计算节点,单一型裂纹问题FVM所得到的最终方程组的系数矩阵总是一个对称的窄带矩阵,而且对角元总是大数,具有良好的数值计算性能.FVM对于SIF沿裂纹前缘急剧变化的复杂情况具有较好的数值模拟能力和较高的计算精度,利用自身一致性,可以求得三维裂纹前缘SIF的高精度解.  相似文献   

9.
提出了一种有限元模拟裂纹扩展的单元子划分结合子结构的方法。本方法中,裂纹可以进入或穿过一个单元,或沿单元的边界扩展,因此裂纹可以沿任意路径扩展而不受初始网格的限制。对上述几类包含裂纹的单元按照裂纹的路径进行子划分,覆盖一条裂纹的所有子划分单元就组成了一个子结构,子结构规模随裂纹的扩展而增大。子结构中因单元子划分而新增的结点自由度,通过自由度的凝聚用初始网格结点的自由度表示,因此结构整体分析的总自由度不变。以上述方法为基础建立了裂纹萌生和扩展的准则。用本文的方法分析了单(双)材料无限大平面中心(界面)裂纹的裂尖场,验证了本文方法的精度,并模拟了颗粒复合材料中微裂纹在颗粒、基体和界面中逐步扩展的过程,考核了本文方法对复杂裂纹扩展问题模拟的适用性。  相似文献   

10.
本文基于钝裂纹端部位移场的渐近解和等参元构造方法,开发了一种新的适合钝裂纹端部应力场计算的扩展单元法,为了消除不同单元间的位移不协调又在扩展单元的基础上提出过渡单元.和常规的等参元相比,扩展单元除了以节点位移为待求未知量外,它们额外增加了Ⅰ型和Ⅱ型广义应力强度因子作为未知量.根据这个理论我们编制了有限元的程序并计算了算例,算例表明,在网格较大的情况下,与常规等参元计算方案相比,扩展单元和过渡单元法更好地接近理论值,它具有计算精度高、减少缺陷附近的单元数量和计算时间等优点.  相似文献   

11.
江守燕  李云  杜成斌 《力学学报》2019,51(1):278-288
结合了扩展有限元法(extended finite elementmethods,XFEM)和比例边界有限元法(scaled boundary finite elementmethods,SBFEM)的主要优点,提出了一种改进型扩展比例边界有限元法(improvedextended scaled boundary finite elementmethods,$i$XSBFEM),为断裂问题模拟提供了一条新的途径.类似XFEM,采用两个正交的水平集函数表征材料内部裂纹面,并基于水平集函数判断单元切割类型;将被裂纹切割的单元作为SBFE的子域处理,采用SBFEM求解单元刚度矩阵,从而避免了XFEM中求解不连续单元刚度矩阵需要进一步进行单元子划分的缺陷;同时,借助XFEM的主要思想,将裂纹与单元边界交点的真实位移作为单元结点的附加自由度考虑,赋予了单元结点附加自由度明确的物理意义,可以直接根据位移求解结果得出裂纹与单元边界交点的位移;对于含有裂尖的单元,选取围绕裂尖单元一圈的若干层单元作为超级单元,并将此超级单元作为SBFE的一个子域求解刚度矩阵,超级单元内部的结点位移可通过SBFE的位移模式求解得到,应力强度因子可基于裂尖处的奇异位移(应力)直接获得,无需借助其他的数值方法.最后,通过若干数值算例验证了建议的$i$XSBFEM的有效性,相比于常规XFEM,$i$XSBFEM的基于位移范数的相对误差收敛性较好;采用$i$XSBFEM通过应力法和位移法直接计算得到的裂尖应力强度因子均与解析解吻合\较好.   相似文献   

12.
基于扩展有限元的应力强度因子的位移外推法   总被引:1,自引:0,他引:1  
周博  薛世峰 《力学与实践》2017,39(4):371-378
针对平面裂纹问题,阐述了扩展有限元法的单元位移模式、推导了扩展有限元法的控制方程、介绍了特殊单元的数值积分技术.基于最小二乘法,建立了应力强度因子位移外推法的计算公式.利用MATLAB编写计算程序,对平面裂纹问题用扩展有限元法进行了计算.基于扩展有限元法的计算结果,分别利用位移外推法和相互作用积分法,对平面裂纹的应力强度因子进行了计算.计算结果表明,位移外推法比相互作用积分法能更方便和准确地计算平面裂纹的应力强度因子.  相似文献   

13.
动态断裂力学的无限相似边界元法   总被引:6,自引:1,他引:6  
对弹性动力学的相似边界元法进行了进一步研究,推导了相应的计算公式,并在此基础上提出了动态断裂力学的无限相似边界元法.与传统的边界元法相比,相似边界元法由于只需在少数单元上进行数值积分,大大减少了计算量.对动态断裂力学问题,无限相似边界元法由于在裂纹尖端的边界上设置了逼近于裂纹尖端的无限个相似边界单元,可直接得到裂纹尖端具有奇异性的应力,而不需要设置奇异单元,从而突破了奇异单元对应力奇异性阶次的局限.另外,还讨论了无限相似边界元法得到的无限阶的线性代数方程组的求解方法.  相似文献   

14.
In this paper, the detailed two-dimensional infinite element method (IEM) formulation with infinite element (IE)–finite element (FE) coupling scheme for investigating mode I stress intensity factor in elastic problems with imbedded geometric singularities (e.g. cracks) is presented. The IE–FE coupling algorithm is also successfully extended to solve multiple crack problems. In this method, the domain of the primary problem is subdivided into two sub-domains modeled separately using the IEM for the multiple crack sub-domain, and the FEM for the uncracked sub-domain. In the IE sub-domain, the similarity partition concept together with the IEM formulation are employed to automatically generate a large number of infinitesimal elements, layer by layer, around the tip of each crack. All degrees of freedom related to the IE sub-domain, except for those associated with the coupling interface, are condensed and transformed to form a finite master IE for each crack with master nodes on sub-domain boundary only. All of the stiffness matrices constructed in the IE sub-domains are assembled into the system stiffness matrix for the FE sub-domain. The resultant FE solution with a symmetrical stiffness matrix, having the singularity effect of imbedded cracks in IEs, is required only for solving multiple crack problems.Using these efficient numerical techniques a very fine mesh pattern can be established around each crack tip without increasing the degree of freedom of the global FEM solution. One is easily allowed to conduct parametric analyses for various crack sizes without changing the FE mesh. Numerical examples are presented to show the performance of the proposed method and compared with the corresponding known results where available.  相似文献   

15.
应用一种边界元方法来研究内部压力作用下矩形板中源于椭圆孔的分支裂纹。该边界元方法由Crouch与Starfied建立的常位移不连续单元和笔者最近提出的裂尖位移不连续单元构成。在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界。本数值结果进一步证实这种数值方法对计算有限大板中复杂裂纹的应力强度因子的有效性,同时该数值结果可以揭示裂纹体几何对应力强度因子的影响。  相似文献   

16.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

17.
The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are used to account for the crack. This enables the domain to be modeled by finite elements without explicitly meshing the crack surfaces, and hence quasi-static crack propagation simulations can be carried out without remeshing. In this paper, we discuss some of the key issues in the X-FEM and describe its implementation within a general-purpose finite element code. The finite element program Dynaflow™ is considered in this study and the implementation for modeling 2-d cracks in isotropic and bimaterial media is described. In particular, the array-allocation for enriched degrees of freedom, use of geometric-based queries for carrying out nodal enrichment and mesh partitioning, and the assembly procedure for the discrete equations are presented. We place particular emphasis on the design of a computer code to enable the modeling of discontinuous phenomena within a finite element framework.  相似文献   

18.
Two different types of 8-node cracked quadrilateral finite element are presented for fracture applications. The first element contains a central crack and the other one includes an edge crack. The introduced elements are applicable in 2D problems. The crack is not physically modeled within the element, but instead, its effects on the stiffness matrix are taken into account by utilizing linear fracture mechanics laws. Furthermore, a simple and practical procedure is proposed for calculation of stress intensity factor (SIF) by employing proposed cracked elements. Several numerical examples are presented to evaluate the capabilities of the proposed elements and procedure.  相似文献   

19.
In this paper it is shown how the displacement formulation of the theorem of minimum potential energy can be used with the finite element method to approximate both compressible and incompressible equilibria of linearly elastic, isotropic solids. The procedure is shown to be equivalent to the more complicated “mixed principle” technique, due to the use of numerical integration applied to the computation of the element stiffness matrices. Criteria for the choice of integration formulas and elements are discussed, and numerical examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号