首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khoei  A. R.  Ehsani  R.  Hosseini  N. 《Transport in Porous Media》2022,145(1):175-195

In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO2 sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO2. The flow inside the matrix domain is governed by the Darcy law, while the flow within the fracture is modeled using the Poiseuille flow. The mass conservation law is fulfilled for each fluid phase at both porous matrix and fracture domain; moreover, the mass exchange between the matrix and fracture is guaranteed through the integral formulation of mass conservation law. Applying the X-FEM technique, the explicit representation of macro-cracks is modeled by enriching the standard finite element approximation space with an enrichment function. Finally, several numerical examples of CO2 injection into a brine aquifer below a naturally fractured cap-rock are modeled in order to investigate the effects of cracks’ aperture and orientation as well as the temperature of aquifer and the depth of injection on the leakage pattern of the carbon dioxide through the cap-rock.

  相似文献   

2.
While fractured formations are possibly the most important contributors to the production of oil worldwide, modeling fractured formations with rigorous treatments has eluded reservoir engineers in the past. To date, one of the most commonly used fractured reservoir models remains the one that was suggested by Warren and Root nearly four decades ago. In this paper, a new model for fractures embedded in a porous medium is proposed. The model considers the Navier-Stokes equation in the fracture (channel flow) while using the Brinkman equation for the porous medium. Unlike the previous approach, the proposed model does not require the assumption of orthogonality of the fractures (sugar cube assumption) nor does it impose incorrect boundary conditions for the interface between the fracture and the porous medium. Also, the transfer coefficient between the fracture and matrix interface does not need to be specified, unlike the cases for which Darcy's law is used. In order to demonstrate the usefulness of the approach, a two-dimensional model of a fractured formation is developed and numerical simulation runs conducted.

The proposed model is derived through a series of finite element modeling runs for various cases using the Navier-Stokes equation in the channel while maintaining the Brinkman equation in the porous medium. Various cases studied include different fracture orientations, fracture frequencies, and thermal and solutal constraints. The usefulness of the proposed model in modeling complex formations is discussed. Finally, a series of numerical runs also provided validity of the proposed model for the cases in which thermal and solutal effects are important. Such a study of double diffusive phenomena, coupled with forced convection, in the context of fractured formations has not been reported before.  相似文献   

3.
The coupled flow problem of an incompressible axisymmetrical quasisteady motion of a porous sphere translating in a viscous fluid along the axis of a circular cylindrical pore is discussed using a combined analytical–numerical technique. At the fluid–porous interface, the stress jump boundary condition for the tangential stress along with continuity of normal stress and velocity components are employed. The flow through the porous particle is governed by the Brinkman model and the flow in the outside porous region is governed by Stokes equations. A general solution for the field equations in the clear region is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are satisfied first at the cylindrical pore wall by the Fourier transforms and then on the surface of the porous particle by a collocation method. The collocation solutions for the normalized hydrodynamic drag force exerted by the clear fluid on the porous particle is calculated with good convergence for various values of the ratio of radii of the porous sphere and pore, the stress jump coefficient, and a coefficient that is proportional to the permeability. The shape effect of the cylindrical pore on the axial translation of the porous sphere is compared with that of the particle in a spherical cavity; it found that the porous particle in a circular cylindrical pore in general attains a lower hydrodynamic drag than in a spherical envelope.  相似文献   

4.
Over the past few decades, significant progress of assessing chemical transport in fractured rocks has been made in laboratory and field investigations as well as in mathematic modeling. In most of these studies, however, matrix diffusion on fracture–matrix surfaces is considered as a process of molecular diffusion only. Mathematical modeling based on this traditional concept often had problems in explaining or predicting tracer transport in fractured rock. In this article, we propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity. The proposed model incorporates an additional matrix-diffusion process, induced by rapid fluid flow along fractures. According to the boundary-layer theory, fracture-flow-enhanced matrix diffusion may dominate mass-transfer processes at fracture–matrix interfaces, where rapid flow occurs through fractures. The new conceptual model can be easily integrated with analytical solutions, as demonstrated in this article, and numerical models, as we foresee. The new conceptual model is preliminarily validated using laboratory experimental results from a series of tracer breakthrough tests with different velocities in a simple fracture system. Validating of the new model with field experiments in complicated fracture systems and numerical modeling will be explored in future research.  相似文献   

5.
6.
Computational Modeling of Fluid Flow through a Fracture in Permeable Rock   总被引:3,自引:0,他引:3  
Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting friction-factor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.  相似文献   

7.
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture is associated with leak-off from the fracture face into the adjoining matrix. Design of a gel treatment needs understanding of the flow of gelling mixture in and around the fracture. This flow is addressed here for Cr(III)–partially hydrolyzed polyacrylamide formulation through experiments and conceptual model. A fractured slab was used to develop a lab-model, where the flow along the fracture and simultaneous leak-off into the matrix can be controlled. Also, the fracture and matrix properties had to be evaluated individually for a meaningful analysis of the displacement of gelling solution. During this displacement, the gelling fluid leaked off from the fracture into the matrix as a front, resulting in a decreasing velocity (and pressure gradient) along the fracture. With pressure in the fracture held constant with time, the leak-off rate decreased as the viscous front progressed into the matrix. The drop in leak-off rate was rapid during the initial phase of displacement. A simple model, based on the injection of a viscous solution into the dual continua, could explain the displacement of Cr(III)–polyacrylamide gelling mixture through the fractured slab. This study rules out any major complication from the immature gelling fluid, e.g., build-up of cake layer on the fracture face. The model, due to its simplicity may become useful for quick sizing of gel treatment, and any regression-based evaluation of fluid properties in a fracture for other applications.  相似文献   

8.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid via a porous medium bounded by a semi-infinite vertical porous plate in the presence of a transverse magnetic field. The plate moves with constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. A uniform magnetic field acts perpendicularly to the porous surface in which absorbs the micropolar fluid with a suction velocity varying with time. Numerical results of velocity distribution of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Also, the results of the skin-friction coefficient, the couple stress coefficient, the rate of the heat and mass transfers at the wall are prepared with various values of fluid properties and flow conditions.  相似文献   

9.
Vugs and fractures are common features of carbonate formations. The presence of vugs and fractures in porous media can significantly affect pressure and flow behavior of a fluid. A vug is a cavity (usually a void space, occasionally filled with sediments), and its pore volume is much larger than the intergranular pore volume. Fractures occur in almost all geological formations to some extent. The fluid flow in vugs and fractures at the microscopic level does not obey Darcy’s law; rather, it is governed by Stokes flow (sometimes is also called Stokes’ law). In this paper, analytical solutions are derived for the fluid flow in porous media with spherical- and spheroidal-shaped vug and/or fracture inclusions. The coupling of Stokes flow and Darcy’s law is implemented through a no-jump condition on normal velocities, a jump condition on pressures, and generalized Beavers–Joseph–Saffman condition on the interface of the matrix and vug or fracture. The spheroidal geometry is used because of its flexibility to represent many different geometrical shapes. A spheroid reduces to a sphere when the focal length of the spheroid approaches zero. A prolate spheroid degenerates to a long rod to represent the connected vug geometry (a tunnel geometry) when the focal length of the spheroid approaches infinity. An oblate spheroid degenerates to a flat spheroidal disk to represent the fracture geometry. Once the pressure field in a single vug or fracture and in the matrix domains is obtained, the equivalent permeability of the vug with the matrix or the fracture with matrix can be determined. Using the effective medium theory, the effective permeability of the vug–matrix or fracture–matrix ensemble domain can be determined. The effect of the volume fraction and geometrical properties of vugs, such as the aspect ratio and spatial distribution, in the matrix is also investigated. It is shown that the higher volume fraction of the vugs or fractures enhances the effective permeability of the system. For a fixed-volume fraction, highly elongated vugs or fractures significantly increase the effective permeability compared with shorter vugs or fractures. A set of disconnected vugs or fractures yields lower effective permeability compared with a single vug or fracture of the same volume fraction.  相似文献   

10.

We study the generation and flow of foam through rough-walled, fractured marble rocks that mimic natural fracture systems in carbonate reservoirs. Flow was isolated to the fracture network because of the very low rock permeability of the marble samples and foam generated in situ during co-injection of surfactant solution and gas. The foam apparent viscosities were calculated at steady pressure gradients for a range of gas fractions, and similar to foam flow in porous media, we identified two flow regimes for foam flow in fractures: a high-quality flow regime only dependent on liquid velocity and a low-quality flow regime determined by the gas and liquid velocities. Variations in local fluid saturation during co-injection were visualized and quantified using positron emission tomography combined with computed tomography.

  相似文献   

11.
Although a lot of research has been done in modeling the oil recovery from fractured reservoirs by countercurrent imbibition, less attention has been paid to the effect of the fracture fluid velocity upon the rate of oil recovery. Experiments are conducted to determine the effect of fracture flow rate upon countercurrent imbibition. A droplet detachment model is proposed to derive the effective water saturation in a thin boundary layer at the matrix–fracture interface. This effective boundary water saturation is a function of fluid properties, fluid velocity in the fracture and fracture width. For a highly water–wet porous medium, this model predicts an increase in the boundary water saturation with increase in fracture fluid velocity. The increase in boundary water saturation, in turn, increases the oil recovery rate from the matrix, which is consistent with the experimental results. The model also predicts that the oil recovery rate does not vary linearly with the boundary water saturation.  相似文献   

12.
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture (referred as gelant) is associated with leak-off from the face of the fracture into the adjoining matrix. As the gelant gets more crosslinked, the gelant encounters more resistance in flowing into the porous matrix. This article addresses the build-up of flow resistance as the Cr(III)-partially hydrolyzed polyacrylamide gelant, at various stages of crosslinking flows into the matrix. Flow experiments were conducted at constant injection pressure in unfractured Berea rocks that represent a matrix adjoining a fracture. Before entering the core, gelants underwent post-mixing delays, shorter than their gel time. On continued displacement, flow resistance developed that reduced the flow rate further. More delay, after mixing of gelant hastened, the build-up of resistance to flow and the resistance was contained nearer to the inlet face. Effect of flow over fracture face on the build-up of flow resistance in the matrix was also evaluated by conducting displacement of gelant in two fractured slabs. In one case, a part of the injected fluid came out of the fracture outlet with the rest leaking off into matrix. In the other case, all the fluid that entered into the fracture leaked off into the matrix. Build-up of flow resistances in the matrix for the two cases was compared. A simple conceptual model is presented that could explain the flow of gelant and build-up of resistance in porous rock at constant injection pressure.  相似文献   

13.
Creeping flow past an isolated, spherical and permeable aggregate has been studied adopting the Stokes equation to model the fluid external to the aggregate and the Brinkman equation for the internal flow. At the interface of the clear fluid and porous region stress jump boundary condition for tangential stresses is used along with the continuity of velocity components and continuity of the normal stress. Using Faxen’s laws, drag and torque are calculated for different flow conditions and it is observed that drag and torque not only change with the permeability of the porous region, but as stress jump coefficient increases, the rate of change in behavior of drag and torque increases.  相似文献   

14.
Lattice Boltzmann Simulation of Fluid Flow in Synthetic Fractures   总被引:1,自引:0,他引:1  
Fractures play an important role in reservoir engineering as they dominate the fluid flow in the reservoir. All evidence suggests that rarely can one model flow and transport in a fractured rock consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Instead, one must generally account for the highly erratic heterogeneity, directional dependence, dual or multicomponent nature and multiscale behavior of fractured rocks. As experimental methods are expensive and time consuming most of the time numerical methods are used to study flow and transport in a fractured rock. In this work, we present results of the numerical computations for single phase flow simulations through two-dimensional synthetically created fracture apertures. These synthetic rock fractures are created using different fractal dimensions, anisotropy factors, and mismatch lengths. Lattice Boltzmann method (LBM), which is a new computational approach suitable to simulate fluid flow especially in complex geometries, was then used to determine the permeability for different fractures. Regions of high velocity and low velocity flow were identified. The resulting permeability values were less than the ones obtained with the cubic law estimates. It has been found that as the mean aperture–fractal dimension ratio increased permeability increased. Moreover as the anisotropy factor increased permeability decreased. Neural network simulations were used to generalize the results.  相似文献   

15.
The present study covers the problem of rotation of a porous disk under a viscous incompressible fluid that fills the half-space above the disk, which is the generalization of the von Karman’s problem. It is found that, instead of solving the exact problem, which is rather complicated by coupling the motions of the free fluid and that contained inside the permeable disk, it is sufficient to solve a much simpler problem of the motion of the free fluid placed onto a permeable plane. Assuming the flow in the permeable disk is described by the Brinkman equations, we obtain a self-similar formulation of the problem. Employing this formulation, we also show that the boundary condition associated with continuity of the tangential strains and tangential velocity components is satisfied at the fluid–porous body interface. The coefficient for the vertical velocity component is furthermore obtained. Various extreme cases are identified.  相似文献   

16.
We investigate the boundary condition between a free fluid and a porous medium, where the interface between the two is given as a periodically curved structure. Using a coordinate transformation, we can employ methods of periodic homogenisation to derive effective boundary conditions for the transformed system. In the porous medium, the fluid velocity is given by Darcy's law with a non-constant permeability matrix. In tangential direction as well as for the pressure, a jump appears. Its magnitudes can be calculated with the help of a generalised boundary layer function. The results can be interpreted as a generalised law of Beavers and Joseph for curved interfaces.  相似文献   

17.
Combined free and forced convection flow in a parallel plate vertical channel filled with porous matrix is analyzed in the fully developed region with boundary conditions of third kind. The flow is modeled using the Brinkman?CForchheimer-extended Darcy equations. The plates exchange heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. Governing equations are solved numerically by shooting technique that uses classical explicit Runge?CKutta scheme and Newton?CRaphson method as a correction scheme and analytically using perturbation series method for Darcy model. The velocity field, the temperature field and Nusselt numbers are obtained for governing parameters such as porous parameter, inertia term and perturbation parameter for equal and unequal Biot numbers and are displayed graphically. The dimensionless mean velocity and bulk temperature are also determined. It is found that the numerical solutions agree for small values of the perturbation parameter in the absence of the inertial forces.  相似文献   

18.
A numerical simulation of interstitial fluid flow and blood flow and diffusion of magnetic nanoparticles (MNPs) are developed, based on the governing equations for the fluid flow, i.e., the continuity and momentum and mass diffusion equations, to a tissue containing two-dimensional cylindrical tumor. The tumor is assumed to be rigid porous media with a necrotic core, interstitial fluid and two capillaries with arterial pressure input and venous pressure output. Blood flow through the capillaries and interstitial fluid flow in tumor tissues are carried by extended Poiseuille’s law and Darcy’s law, respectively. Transvascular flows are also described using Starling’s law. MNPs diffuse by interstitial fluid flow in tumor. The finite difference method has been used to simulate interstitial fluid pressure and velocity, blood pressure and velocity and diffusion of MNPs injected inside a biological tissue during magnetic fluid hyperthermia (MFH). Results show that the interstitial pressure has a maximum value at the center of the tumor and decreases toward the first capillary. The reduction continues between two capillaries, and interstitial pressure finally decreases in direction of the tumor perimeter. This study also shows that decreasing in intercapillary distance may cause a decrease in interstitial pressure. Furthermore, multi-site injection of nanoparticles has better effect on MFH.  相似文献   

19.
Xu  Jie  Hu  Bill X. 《Transport in Porous Media》2004,57(2):181-202
A numerical method of moment is developed for solute flux through a nonstationary, fractured porous medium. Solute flux is described as a space-time process where time refers to the solute flux breakthrough and space refers to the transverse displacement distribution at a control plane. A first-order mass diffusion model is applied to describe interregional mass diffusion between fracture (advection) and matrix (nonadvection) regions. The chemical is under linear equilibrium sorption in both fracture and matrix regions. Hydraulic conductivity in the fracture region is assumed to be a spatial random variable. In this study, the general framework of Zhang et al.(2000) is adopted for solute flux in a nonstationary flow field. A time retention function related to physical and chemical sorption in the dual-porosity medium is developed and coupled with solute advection along random trajectories. The mean and variance of total solute flux are expressed in terms of the probability density function of the parcel travel time and transverse displacement. The influences of various factors on solute transport are investigated. These factors include the interregional mass diffusion rate between fracture and matrix regions, chemical sorption coefficients in both regions, water contents in both regions, and location of the solute source. In comparison with solute transport in a one-region medium, breakthrough curves of the mean and variance of the total solute flux in a two-region medium have lower peaks and longer tails. As compared with the classical stochastic studies on solute transport in fractured media, the numerical method of moment provides an approach for applying the stochastic method to study solute transport in more complicated fractured media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号