首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学会会志》2017,64(11):1294-1302
In this work, a nickel(II) synergist complex with methyl isonicotinate (BI, a short chain analog of n‐hexyl 3‐pyridinecarboxylate ester) and naphthalene‐2‐sulfonic acid (HNS, a short chain analog of dinonylnaphthalene sulfonic acid) was synthesized and studied by single‐crystal X‐ray diffraction. The nickel(II) complex crystallizes in the monoclinic P 21/n space group with the composition [Ni(H2O)4(BI)2](NS)2·2H2O. The Ni(II) ions of these crystallographically independent molecules lie on an inversion center, forming a trans‐form distorted octahedral coordination structure. The nickel(II) ions can coordinate with four water molecules and two BI ligands, resulting in a mono‐metallic structure [Ni(H2O)4(BI)2]2+. There is no direct interaction between nickel(II) and sulfonic oxygen atoms of the sulfonate anions, but hydrogen bonds form between sulfonic oxygen atoms and water molecules in the synergist complex. In order to further elucidate the solution structure of the nickel(II) complexes with the actual synergistic mixture containing n‐hexyl 3‐pyridinecarboxylate ester and dinonylnaphthalene sulfonic acid in the nonpolar organic phase, the nickel(II) complexes were studied by electrospray ionization mass spectrometry. The results indicated that the extracted nickel(II) complexes in the nonpolar solvent have a similar coordination structure as that of the crystalline nickel(II) synergist complex.  相似文献   

2.
《中国化学会会志》2017,64(7):833-842
In the present work, the cobalt(II ) synergist complex with isobutyric acid (HLI ) and 5‐hydroxy‐4‐octanone oxime (HBI ), which were the corresponding short‐chain analogs of active synergistic mixture of Versatic10 (HL ) and Lix63 (5,8‐diethyl‐7‐hydroxy‐6‐dodecanoneoxime, HB ), was prepared and studied by X‐ray single‐crystal diffraction. The crystal structure of the cobalt(II ) synergistic complex showed that the composition of the complex was Co(HBI )2(LI )2 with a cis‐form octahedron geometry structure. Both intra and intermolecular hydrogen bonding between the uncoordinated carbonyl oxygen atom of the deprotonated monodentate anionic ligand LI and the hydrogen atom of the α‐hydroxy or the oxime hydroxyl group of HBI were observed in the crystal lattice. In order to bridge the gap between the solid‐state structure of the cobalt(II ) synergist complex and the solution structure of the extracted cobalt(II ) complex with the actual synergistic mixture containing Versatic10 and Lix63 in the nonpolar organic phase, both the cobalt(II ) synergistic complex and the extracted cobalt(II ) complex were further investigated by Fourier transform infrared spectroscopy (FT‐IR ) and electrospray ionization mass spectrometry (ESI‐MS ). The results indicated that the extracted cobalt(II ) complex in the nonpolar organic phase might possess a similar coordination structure as that of the cobalt(II ) synergist complex.  相似文献   

3.
《中国化学会会志》2017,64(2):205-216
In the present work, the nickel(II ) synergist complex with isobutyric acid (HLI ) and 5‐hydroxy‐4‐octanone oxime (HBI ), which were the corresponding short‐chain analogs of the active synergistic mixture of Versatic10 (HL ) and Lix63 (5,8‐diethyl‐7‐hydroxy‐6‐dodecanoneoxime, HB ), was prepared and studied by single‐crystal X‐ray diffraction (XRD ). The crystal structure of the nickel(II ) synergist complex showed that the composition of the complex was Ni(LI )2(HBI )2 with a cis ‐form octahedron geometry structure. Both intra‐ and intermolecular hydrogen bonding were observed in the crystal lattice. Compared with the free ligands, similar band shifts of Fourier transform infrared (FT‐IR ) spectra assigned to the stretching vibration of carbon–oxygen single bond (C O), the stretching vibration of carbon–nitrogen double bond (CN), and the disappearance of the scissoring vibration of α‐hydroxy (OH ) were correspondingly found in both the nickel(II ) synergist complex and the extracted nickel(II ) complex in the nonpolar organic phase. Combined with the results from ESI‐MS , XRD , and slope analysis, it was concluded that the major species of the extracted nickel(II ) complex in the nonpolar organic phase might possess a similar coordination structure [Ni(HB )2(L)2] as the nickel(II ) synergist complex, along with the neutral complex [Ni(HB )(B)2].  相似文献   

4.
Abstract

In this work, to elucidate the synergistic extraction mechanism of cobalt(II) with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (L), hexaaquacobalt(II) naphthalene-2-sulfonate (compound 1) was prepared using naphthalene-2-sulfonic acid (HNS, the short chain analog of HDNNS) and di-methyl isonicotinate tetraaquacobalt(II) naphthalene-2-sulfonate (compound 2) was prepared using methyl isonicotinate (LI, a short chain analog of 2-ethylhexyl 4-pyridinecarboxylate ester) and HNS; the compounds were studied by single crystal X-ray diffraction. Moreover, 2 and the actual extracted cobalt(II) complex were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS). The results indicated that the actual extracted cobalt(II) complex possesses a similar coordination structure as 2. Combined with the results obtained by single crystal X-ray diffraction of 1 and 2, FT-IR and ESI-MS of 2 and the actual extracted cobalt(II) complex, it is reasonable to conclude that the extracted cobalt(II) complex with the actual synergistic mixture is much more stable than the cobalt(II) complex with HDNNS alone. Therefore, the extraction selectivity cobalt(II) is effectively enhanced with the addition of 2-ethylhexyl 4-pyridinecarboxylate ester to HDNNS.  相似文献   

5.
New copper(II) complexes, [Cu2L1L2] · ClO4 (I) and [Ni(L3)2] (II), where L1 is the monoanionic form of 2-[1-(2-emthylaminoethylimino)ethyl]phenol, L2 is the dianionic form of N,N′-ethylene-bis(2-hydroxyacetophenonylideneimine), L3 is the mono-anionic form of 2-(1-iminoethyl)phenol, were prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction. In complex I, the Cu(1) atom is coordinated by the NNO tridentate ligand L1 and the two phenolate O atoms of L2, forming a square pyramidal geometry. The Cu(2) atom in complex I is coordinated by the NNOO tetradenate ligand L2, forming a square planar geometry. The Ni atom in complex II is coordinated by two phenolate O and two imine N atoms from two ligands L3, forming a square planar geometry. In the crystal structure of I, the perchlorate anions are linked to the dinuclear copper(II) complex cations through intermolecular N-H...O hydrogen bonds. In the crystal structure of II, the mononuclear nickel complex molecules are linked through intermolecular N-H...O hydrogen bonds, forming a trimer.  相似文献   

6.
Thiotropolone forms a brown water-insoluble complex with copper(II), extracttable into chloroform and other non-polar solvents. The 1:2 complex shows maximum absorption at 450 nm and obeys Beer's law upto 4.55 ppm. The sensitivity of the reaction is 0.0046 μg Cu(II)/cm2 for log I0/I=0.001 with molar absorptivity of 1.36×104. The usefulness of the procedure has been enhanced to the determination of copper in various alloys and synthetic mixtures.  相似文献   

7.
Two new copper(II) complexes, [Cu(L1)2] (I) and [Cu(L2)2] (II), where L1 = 2-bromo-4-chloro- 6-(isopropyliminomethyl)phenolate and L2 = 2-bromo-4-chloro-6-[(2-hydroxyethylimino)methyl]phenolate, have been prepared and structurally characterized by X-ray crystallography (CIF files CCDC nos. 1445936 (I) and 1445935 (II)). In both complexes, the Cu atoms are coordinated by two phenolate oxygen and two imino nitrogen, giving square planar geometry. The complexes have been tested on various strains of bacteria to study their antibacterial effects.  相似文献   

8.
An end-on azido-bridged dinuclear nickel(II) complex [Ni2(L1)21,1-N3)2] · CH3COOH (I) and an end-on azido-bridged polynuclear copper(II) complex [CuL21,1-N3)] n , where L1 is the deprotonated form of 2-[(2-ethylaminoethylimino)methyl]-4-fluorophenol and L2 is the deprotonated form of 2-[(2- dimethylaminoethylimino)methyl]-4-fluorophenol, were prepared and characterized by elemental analysis and FT-IR spectra. Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method (CIF files CCDC nos. 942641 (I) and 942642 (II)). Single crystal X-ray structural studies indicate that the Schiff base ligands coordinate to the metal atoms through phenolate oxygen, imine nitrogen, and amine nitrogen. The Ni atoms in the nickel complex are in octahedral coordination, and the Cu atoms in the copper complex are in square pyramidal coordination. Crystals of the complexes are stabilized by hydrogen bonds. The Schiff bases and the complexes showed potent antibacterial activities.  相似文献   

9.
Trinuclear copper(II) complexes with diacyldihydrazines of aliphatic dicarboxylic acids (from succinic acid to heptadioic acid) and salicylic acid were synthesized. The complexes were studied by chemical analysis, thermogravimetry, and IR spectroscopy. The structure of trinuclear copper(II) complex with diacylhydrazine of glutaric and salicylic acids of the [Cu3L3 · 4Py] · 2Py composition was determined by X-ray crystallography. The complex has a molecular structure and contains three nonequivalent copper atoms. The Cu(2)...Cu(3) distance is 8.506 Å; the Cu(2)...Cu(1) and Cu(3)...Cu(1) distances are 4.612 and 4.588 Å, respectively. The coordination polyhedra of two copper atoms are tetragonal pyramids, and the third copper atom has a square environment. An interest feature of the complex under study is the induced closure of the bent eight-membered chelate ring containing carbon atoms of a polymethylene spacer.  相似文献   

10.
Condensation of bis(ethanediamine) copper(II) perchlorate with formaldhyde and diethyl malonate in basic methanol generates the amino acid ester complex (diethyl bis[(2-aminoethyl)aminomethyl] malonatecopper(II) perchlorate), [Cu(L1)](ClO4)2. Base-catalyzed ester hydrolysis in water of [Cu(L1)]2+ yields bis[(2-aminoethyl)aminomethyl] malonatocopper(II) tetrahydrate, CuL2 · 4 H2O. The two copper(II) complexes were characterized by element analysis, molar conductance, infrared, and electronic spectra studies. The structure of CuL2 · 4 H2O was determined by X-ray diffraction (XRD). The crystal structure reveals that the copper ion is an octahedra with four nitrogens at the equational position and two oxygens at the axial positions.  相似文献   

11.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

12.
An end-on azido-bridged trinuclear cobalt(III) complex [Co3(L1)21,1-N3)4(N3)2(OMe)(MeOH)] (I) and a phenolato-bridged dinuclear copper(II) complex [Cu2(L2)2(NCS)2] (II), where L1 is the deprotonated form of 2-((2-(dimethylamino)ethylimino)methyl)-4-fluorophenol, and L2 is the deprotonated form of 2-((3-(dimethylamino)propylimino)methyl)-4-fluorophenol, have been prepared and characterized by elemental analyses, IR and UV-Vis spectra, and single crystal X-ray diffraction (CIF files CCDC nos. 1023376 (I); 1023377 (II)). The Co atoms in complex I are in octahedral coordination, and the Cu atoms in complex II are in square pyramidal coordination. The antibacterial properties have been tested on some bacteria and yeast.  相似文献   

13.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

14.
Copper Complexes of the New Chelate Ligand 1‐Methyl‐2‐(2‐thiophenolato)‐1H‐benzimidazole (mtpb) and of its Oxidation Products Anodic electrolysis of copper in acetonitrile in the presence of Hmtpb leads to formation of yellow [Cu4(mtbp)4] which was crystallized as a dichloromethane solvate with two crystallographically independent cluster molecules in the unit cell. The copper(I) atoms exhibit slightly pyramidal S2N coordination with bridging thiolate sulfur atoms. The two clusters contain the four copper atoms arranged in a more (Cu1‐Cu4) or less (Cu5‐Cu8) distorted bisphenoidal arrangement. Reaction of mtpb with Cu(ClO4)2 under anoxic conditions also produces [Cu4(mtpb)4]. However, the admittance of O2 in the reaction of mtpb with copper(II) acetate in methanol causes oxidation of the sulfur atoms; a square‐pyramidal configurated copper(II) complex [Cu(CH3CO2‐κ2O)(L1‐κN)(L2‐κN, O)] has been isolated and crystallographically characterized in which L1 is the neutral sulfinic methyl ester and L2 is the sulfonate derived from mtpb.  相似文献   

15.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (HLI) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfinyl]acetic acid (HLII) were carried out. The investigation of the molecular and electronic structure of Cu(II), Ni(II), Zn(II), Fe(II) and Mn(II) complexes has been performed within the density functional theory (DFT) framework. The computed properties were compared to the experimental ones, and molecular structures of the compounds were proposed based on the array of spectral data and quantum chemical calculations. Antibacterial activity of the Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II), Co(II), Ni(II) and Zn(II) complexes and three standard antibiotics; it was found to follow the order: (1) Сu(LI)2 > Mn(LI)2 > HLI > Ni(LI)2 > Zn(LI)2 > Fe(LI)2 > Co(H2O)2LI; (2) Cu(LII)2 > Сo(LII)2 > Ni(LII)2 > Mn(H2O)2(LII)2 > Fe(LII)2 > HLII > Zn(LII)2; their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. The complexes Сu(LI)2, Mn(LI)2 and Co(LII)2 with the high reducing ability were found to be characterized by the highest rates of Cyt с reduction. NADPH:cytochrome P450-reductase had no substantial effect on the rate of сytochrome c reduction with HLI and HLII ligands.  相似文献   

16.
Two CuII complexes of the type [Cu(L1)(L2)] (where L1 = tryptophanate or phenylalaninate; L2 = cysteine thiolate) have been prepared and characterised, and their spectrophotometric and voltammetric behaviour has been investigated. The results obtained by means of FT-IR, e.s.r., u.v.–vis. spectroscopy and by voltammetry revealed the existence of two different [Cu(L1)(L2)] complexes. A significance decrease in the g || value and, concomitantly, an increase in the dd transition energy was observed when a mixed-ligand complex is present. The observed anisotropic g-values indicate the presence of CuII in a tetragonally distorted octahedral geometry. Formation of a mixed-ligand copper complex can be considered as a type of synergism in the presence of cysteine. The redox state CuII or CuI of copper in the Cu(L2) complex depends on the analysing conditions, i.e., cysteine forms a CuII complex under aerobic conditions and a CuI complex in anaerobic media. Tryptophan or phenylalanine is bound to CuII ions in the Cu(L1) complexes.  相似文献   

17.
Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.  相似文献   

18.
Zou  Jianzhong  Wu  Yong  Wei  Xianwen  Duan  Chunying  Liu  Yongjiang  Xu  Zheng 《Transition Metal Chemistry》1998,23(4):481-484
Two different products are obtained when 2,3-pyrazinedicarboxylic acid (PzdcH2) reacts separately with two copper(II) salts: Cu(OAc)2 and CuCl2. One product is a mononuclear CuII complex Cu(PzdcH)2·2H2O, the other is a linear polymeric copper(II) complex [Cu(PzdcH)2·2H2O]n, whose structure has been determined by X-ray diffraction at room temperature. The polymeric complex is composed of copper(II) ions, PzdcH- anions and crystal water molecules. The Cu(1) atom is located in elongated octahedral coordination environment with six donor atoms: O(1), N(1), O(1a), N(1a), O(3b) and O(3c) from four different PzdcH- anions. The two oxygen atoms O(3b) and O(3c) come from the carboxylic acid group of the PzdcH- anion of the upper and lower layers, so that an infinite chain constitutes the crystal lattice. There are very strong hydrogen bond interactions between chains which lead to a three-dimensional structure. The magnetic susceptibility of the polymeric complex [Cu(PzdcH)2·2H2O]n has been determined in the 1.5–300K range. A study of magnetic properties shows that a weak antiferromagnetic interaction exists between two copper(II) ions.  相似文献   

19.
A copper(I) complex [Cu(L1)2I]2 (1) [L1 = 2-cyanopyrazine] has been prepared by the reduction of copper(II) with iodide in the presence of L1. This complex is made to undergo [2 + 3] cycloaddition with sodium azide to prepare a copper(II) complex, [Cu(L2)2(H2O)2]·H2O (2) [HL2 = 5-pyrazinyltetrazole]. Both the complexes have been characterized by elemental and spectral analysis and single-crystal X-ray diffraction studies. Copper(I) centre has tetrahedral geometry in complex 1, whereas copper(II) centre assumes octahedral geometry in complex 2. Supramolecular interactions in both complexes were also explored.  相似文献   

20.
Island copper-containing films consisting mainly of copper(I) oxide particles were obtained on a quartz surface by photochemical decomposition of copper(II) complex compounds with amino acids. The size and morphology of Cu2O particles and their dependence on the photolysis duration and the amino acid nature contained in the complex were established. The films obtained by the complex [Cu(β-Ala)2] photolysis have the highest photocatalytic activity in reactions of methyl orange photodecomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号