首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Crystals of Pb2(NO2)(NO3)(SeO3) were synthesized by partial reduction of nitrate ions with native copper under hydrothermal conditions. The crystal structure [a=5.529 (2) Å,b=10.357 (3) Å,c=6.811 (2) Å, space group Pmn21,Z=2] was determined from 1 707 independent X-ray data up to sin /=0.81 Å–1 and was refined toR w =0.028. The Pb(1) atom is ten coordinated to O atoms [Pb(1)-O from 2.51 Å to 2.96 Å], the Pb(2) atom has three nearest O atoms [Pb(2)-O=2.41 Å (1 ×) and 2.45 Å (2 ×)] and six next-nearest O atoms [Pb(2)-O from 2.80 Å to 3.22 Å].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

2.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

3.
The crystal structure of the new phase Cu7(OH)6(TeO3)2(SO4)2 [a=7.389 (1),b=7.638 (1),c=7.662 (2) Å, =75.17 (1), =75.90 (1), =84.19 (1)°;Z=1] was determined by direct methods andFourier summations from X-ray intensities, and was refined in space group P -C i 1 toR=0.039. As usual, the Cu(II) atoms are coordinated to four O atoms forming approximately a square with average Cu-O=1.96 (3) Å; one or two more distant O neighbours complete the coordination. The shape of the TeO3 group is a rather clear-cut trigonal pyramid. A disorder was found for the SO4 tetrahedra. The compound was synthesized under hydrothermal conditions [500 (10) K, saturation vapour pressure].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

4.
Crystals of K2Co3(OH)2(SO4)3·2H2O were synthesized under hydrothermal conditions. The crystal structure [a=17.945 (4) Å,b=7.557 (2) Å,c=9.760 (3) Å, space group Cmc21,Z=4] was determined by direct methods and refined with single crystal X-ray data. The H atoms were located byFourier syntheses. Their structural parameters were refined, too. The finalR-values areR=0.025 andR w =0.028 (w=1/) for 612 reflections withF 0>3 (F 0). Both Co(II) atoms are octahedral six coordinated and form zigzag chains running parallel [001]. These chains are connected via sulfate groups to built up sheets parallel (100). The KO9 polyhedron and one of the four hydrogen bonds link these sheets.
  相似文献   

5.
CrCl3(thf)3 is a common starting material in the synthesis of organometallic and coordination compounds of Cr. Deposited as an irregular solid with no possibility of recrystallization, it is not a purity guaranteed chemical, causing problems in some cases. In this work, we disclose a well-defined form of the THF adduct of CrCl3 ([CrCl2(μ-Cl)(thf)2]2), a crystalline solid, that enables structure determination by X-ray crystallography. The EA data and XRD pattern of the bulk agreed with the revealed structure. Moreover, its preparation procedure is facile: evacuation of CrCl3·6H2O at 100 °C, treatment with 6 equivalents of Me3SiCl in a minimal amount of THF, and crystallization from CH2Cl2. The ethylene tetramerization catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4] prepared using well-defined [CrCl2(μ-Cl)(thf)2]2 as a starting material exhibited a reliably high activity (6600 kg/g-Cr/h; 1-octene selectivity at 40 °C, 75%), while that of the one prepared using the impure CrCl3(thf)3 was inconsistent and relatively low (~3000 kg/g-Cr/h). By using well-defined [CrCl2(μ-Cl)(thf)2]2 as a Cr source, single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4] and [{Et(Cl)Al(N(iPr)2)2}Cr(μ-Cl)]2 were obtained, allowing structure determination by X-ray crystallography, which had been unsuccessful when the previously known CrCl3(thf)3 was used as the Cr source.  相似文献   

6.
A tetranuclear gold cluster has been synthesized by the reaction of [Au(PPh3)NO3] with the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in THF, and characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectroscopy and X-ray structure determination. The cluster crystallizes in the triclinic Pī, a?=?15.118(8)?Å, b?=?16.057(9)?Å, c?=?24.284(13)?Å, α?=?80.822(9)°, β?=?79.624(8)°, γ?=?81.938(8)°, Z?=?2, R 1?=?0.0626, wR 2?=?0.1894. A single crystal structure determination showed that four gold atoms form a tetrahedral framework. Among these four gold atoms, two were chelated by two nido carborane diphosphine [7,8-(PPh2)2-7,8-C2B9H10]? anions coming from the degradation of the initial closo ligand 1,2-(PPh2)2-1,2-C2B10H10, while the other two were ligated to two PPh3 groups. The luminescence of this cluster was also investigated in dichloromethane solution at room temperature.  相似文献   

7.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

8.
The new compound Sr5(As2O7)2(AsO3OH) was synthesized under hydrothermal conditions. It represents a previously unknown structure type and belongs to a group of a few compounds in the system SrO-As2O5-H2O; (As2O7)4− besides (AsO3OH)2− groups have not been described yet. The crystal structure of Sr5(As2O7)2(AsO3OH) was determined by single-crystal X-ray diffraction (space group P21/n, a=7.146(1), b=7.142(1), , β=93.67(3)°, , Z=4). One of the five symmetrically unique Sr atoms is in a trigonal antiprismatic (Inorg. Chem. 35 (1996) 4708)—coordination, whereas the other Sr atoms adopt the commonly observed (“Collect” data collection software, Delft, The Netherlands, 1999; Methods Enzymol. 276 (1997) 307)—coordination. The position of the hydrogen atom was located in a difference Fourier map and subsequently refined with an isotropic displacement parameter. Worth mentioning is the very short hydrogen bond length Oh-H?O(1) of 2.494(4) Å; it belongs to the shortest known examples where the donor and acceptor atoms are crystallographically different. This hydrogen bond was confirmed by IR spectroscopy. In addition, Raman spectra were collected in order to study the arsenate groups.  相似文献   

9.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

10.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

11.
The B–O–B bond angle distributions for both ring and non-ring boron sites in vitreous B2O3 have been determined by 11B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B3O6] boroxol rings are observed to have a mean internal B–O–B angle of 120.0±0.7° with a small standard deviation, σR=3.2±0.4°, indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO3] units, which share oxygens with the boroxol ring, with a mean Bring–O–Bnon-ring angle of 135.1±0.6° and σNR=6.7±0.4°. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73±0.01.  相似文献   

12.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

13.
We have studied the thermal behaviour under atmospheric pressure of isotypic tetrahydrate cyclotriphosphates MII(NH4)4(P3O9)2x4H2O (M II=Cu, Ni and Co), between 25 and 1400°C, by X-ray diffraction, thermal analyses (TG and DTA) and infrared spectrometry. This study shows that the series of the compounds MII(NH4)4(P3O9)2x4H2O (M II=Cu, Ni and Co) after elimination of water, in two different stages, and ammonia leads, at 400°C to cyclotetraphosphate M2 IIP4O12 crystallized and to a thermal residue with a formula H4P4O12 which undergoes under a thermal degradation by evolving water and pentoxide phosphorus. The kinetic characteristics of the dehydration and elimination of ammonia have been determinated. The vibrational spectra of Cu(NH4)4(P3O9)2x4H2O were examined and interpreted, in the domain of the valency frequencies, on the basis of the crystalline structure of its isotypic compound Co(NH4)4(P3O9)2x4H2O whose cycle has the site symmetry C1, of our results of the calculation of the IR frequencies and the successive isotopic substitutions of the equivalent atoms (3P, 3Oi and 6Oe belonging to the P3Oi3Oe6 ring) of the P3O9 3− cycle with high symmetry D3h. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The plasma chemistry of SF6/O2 mixtures is particularly complicated because of the large number of possible reactions. Over a wide range of conditions, products including SF4, SOF4, SOF2, and SO2F2 can be formed but thre is considerable uncertainty about the major reactions which contribute to the formation of these species. In this work reactions of oxygen atoms with SOF2 and fluorine atoms with SOF2 and SO2 have been studied in order to determine the principal sources of SO2F2 in these plasmas. Reactions were studied at 295 K in a gas flow reactor sampled by a mass spectrometer. No reaction could be detected between oxygen atoms and SOF2, which for the conditions employed, means that the upper limit for the reaction rate coefficient is 1×10–14 cm3 sec–1. The reaction of fluorine atoms with SOF2 was studied with the helium bath gas number density ranging from 3.1×1016 to 2.0×1017 cm–3. Within this range the rate coefficient increased with increasing [He] from (4.1 to 10.8)×10–14 cm3 sec–1. SO2 was found to react with fluorine atoms with a rate coefficient which appeared to be independent of the helium bath gas number density over the range given above. The possibility that this reaction occurred entirely on the walls of the reactor is discussed.  相似文献   

15.
Topological analysis of the crystal structure of Na2ZrSi2O7 (parakeldyshite, space group P1) with an MT framework, where M are ZrO6 octahedra and T are SiO4 tetrahedra, was carried out by the method of coordination sequences (TOPOS.3.2 program package), and the self-organization of this structure was modeled. The cyclic-type suprapolyhedral cluster precursor Na2M2T4 with the local symmetry 1 was identified by bicolor decomposition of the 4646+664 net. The cluster is composed of six polyhedra with two Na atoms located in the center. The precursors control the evolution of high-level crystal-forming clusters. The cluster coordination number is six. The centers of eight cluster precursors in the superprecursor of the Na2ZrSi2O7 structure are related by translation vectors.  相似文献   

16.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

17.
Summary Single crystals of LiFe3+(SeO3)2 were prepared by hydrothermal synthesis. The crystal structure of LiFe3+(SeO3)2 is reported: tetragonal, space group I 2d,a=10.649(2) Å,c=9.959(2) Å,V=1129.4 Å3,Z=8, 1268 unique reflections,R=0.037. The structure contains LiFeO8 groups, built up by FeO6 octahedra edgesharing with strongly distorted LiO4 tetrahedra. These LiFeO8 groups share corners with trigonal pyramidal SeO3 groups to form a three dimensional network. The mean bondlengths are 1.994 Å, 2.006 Å and 1.699 Å for Li-O, Fe-O and Se(IV)-O, respectively.
Die Kristallstruktur von LiFe3+(SeO3)2
Zusammenfassung Einkristalle von LiFe3+(SeO3)2 wurden auf hydrothermalem Weg dargestellt und ihre Kristallstruktur bestimmt: tetragonal, Raumgruppe I 2d,a=10.649(2) Å,c=9.959(2) Å,V=1129.4 Å3,Z=8, 1268 unabhängige Reflexe,R=0.037. Kennzeichnend für die Atomanordnung sind LiFeO8 Gruppen, die aus FeO6 Oktaedern und mit ihnen kantenverknüpften, stark verzerrten LiO4 Tetraedern aufgebaut sind. Diese LiFeO8 Baueinheiten bilden, mit trigonal pyramidalen SeO3 Gruppen über Ecken verbunden, ein dreidimensionales Netzwerk. Die Mittelwerte der Li-O, Fe-O and Se(IV)-O Abstände sind 1.994 Å, 2.006 Å und 1.699 Å.
  相似文献   

18.
New complexes of the general formula, [M(H2dap4NMetsc)(H2O)2](NO3)2·H2O (M = Zn2+, Cd2+; H2dap4NMetsc = 2,6-diacetylpyridinebis(4N-methylthiosemicarbazone) and [Sn((dap4NMetsc)X2] (X = Ph, Cl and I) (dap4NMetsc = the doubly deprotonated form of 2,6-diacetylpyridine bis(4N-methylthiosemicarbazone) have been synthesized and structurally characterized by a variety of physico-chemical techniques. X-ray crystallographic structure determination shows that in the zinc and cadmium complexes, the bis(thiosemicarbazone) ligand coordinates as a neutral N3S2 pentadentate chelating agent through the two azomethine nitrogen atoms, the pyridine nitrogen atom and the two thione sulfur atoms. The N3S2 donors of the ligand occupy the equatorial plane and the two aqua ligands occupy the sixth and seventh axial positions of the seven-coordinated cadmium(II) and zinc(II) ions. In the tin(IV) complexes, however, the thiosemicarbazone is coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The two apical positions of the seven-coordinate tin(IV) ion are occupied by either phenyl, chlorido or iodido ligands. In each of the complexes, the overall geometry adopted by the metal ion may be considered as a distorted pentagonal-bipyramid.  相似文献   

19.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

20.
Reactions of both SF5 and SF2 with O(3 P) and molecular oxygen have been studied at 295 K in a gas flow reactor sampled by a mass spectrometer. For reactions with O(3 P), rate coefficients of (2.0±0.5)×10–11 cm3 s–1 and (10.8±2.0)×10–11 cm3 s–1 were obtained for SF5 and SF2 respectively. The rate coefficients for reactions with O2 are orders of magnitude lower, with an estimated upper limit of 5×10–16 cm3 s–1 for both SF5 and SF2. Reaction of SF2 with O(3 P) leads to the production of SOF which then reacts with O(3 P) with a rate coefficient of (7.9±2.0)×10–11 cm3 s–1. Both SO and SO2 are products in the reaction sequence initiated by reaction between SF2 and O(3 P). Although considerable uncertainty exists for the heat of formation of SOF, it appears that SO arises only from reaction between SOF and O atoms which is also the source of SO2. These results are discussed in terms of a reaction scheme proposed earlier to explain processes occurring during the plasma etching of Si in SF6/O2 plasmas. A comparison between the results obtained here and those reported earlier for reactions of both CF3 and CF2 with O and O2 shows that there is a marked similarity in the free radical chemistry which occurs in SF6/O2 and CF4/O2 plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号