首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved aeroelastic formulation for the advanced geometry blades, involving variable sweep, droop, pretwist, and planform, is presented. The blade is modeled as a series of arbitrarily-oriented elastic segments with each segment divided into finite elements. Inter-element compatibility relations governing non-Eulerian moderate rotations of the finite elements are also presented. Fuselage dynamic interaction with the advanced geometry blades is included in the formulation. The nonlinear partial differential equations of motion are discretized in space and time using Hamilton's principle. Selective results are presented in hover and forward flight. Results indicate that sweep, and droop in particular, can have a strong influence on both the rotor aeroelastic stability and the rotorcraft aeromechanical stability. Droop can be considerably stabilizing. Sweep increases the blade torsional loads, but is not detrimental to flap and lag vibratory loads.1  相似文献   

2.
The dynamic stability of orthotropic thick plates subjected to a periodic uniaxial stress and a bending stress is investigated. Both the rotary inertia and the transverse stress are considered in the investigation. The governing equations of motion of Mathieu type are established by applying the Galerkin method with reduced eigenfunction transforms. Based on Bolotin’s method, the dynamic instability regions of graphite- and glass-fiber-reinforced plates are evaluated by solving eigenvalue problems. A dynamic instability index is defined and used as an instability measure to study the influence of various parameters. The effects of material properties and load parameters on the instability region and on the index of dynamic instability of orthotropic plates are discussed.  相似文献   

3.
综述了大气运动基本方程组在光滑函数类中的稳定性和Navier-Stokes方程的不稳定性的若干结论.在此基础上,以大气运动方程组的Boussinesq近似为例,阐述了Navier-Stokes方程的不稳定性导致的大气运动基本方程组的某些简化模式的不稳定性,从而得到在简化基本方程过程中应该遵守的一个原则,以保证简化方程的稳定性.  相似文献   

4.
We present analytical and computational results concerning the linear stability and instability of the uniform steady-state solution of a system of reaction-diffusion equations where a parameter in the kinetic terms is periodic in time. Under suitable assumptions the system is equivalent to a scalar equation with a periodically varying delay. Such a varying delay can model the seasonal fluctuations to the regeneration time of a resource. We study the effect such a varying delay can have on the stability of the spatially uniform steady-state. Analytical results reveal that instability can set in if the delays are large, while computational methods of analysing the stability equations reveal the precise shape of the instability boundary. The nonlinear stability of the uniform state is also examined using ladder methods.  相似文献   

5.
We deal with the problem of orbital stability of planar periodic motions of a dynamically symmetric heavy rigid body with a fixed point. We suppose that the center of mass of the body lies in the equatorial plane of the ellipsoid of inertia. Unperturbed periodic motions are planar pendulum-like oscillations or rotations of the body around a principal axis keeping a fixed horizontal position. Local coordinates are introduced in a neighborhood of the unperturbed periodic motion and equations of the perturbed motion are obtained in Hamiltonian form. Regions of orbital instability are established by means of linear analysis. Outside the above-mentioned regions, nonlinear analysis is performed taking into account terms up to degree 4 in the expansion of the Hamiltonian in a neighborhood of unperturbed motion. The nonlinear problem of orbital stability is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients. The orbital stability is investigated analytically in two limiting cases: small amplitude oscillations and rotations with large angular velocities when a small parameter can be introduced.  相似文献   

6.
N. Chynkulyak 《PAMM》2002,1(1):119-120
The present paper deals with equations, which generalize the known Euler‐Poisson equations for the motion of a heavy rigid body about a fixed point. These equations arise in dynamics of systems of coupled rigid bodies. In these equations the generalized inertia tensor depends upon components of vertical vector, i.e. it is not constant. Our aim is to analyze Lyapunov stability of stationary solutions and orbital stability of periodic solutions of the equations under study.  相似文献   

7.
This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.  相似文献   

8.
We study the linear stability of a three-layer flow of immiscible liquids located in a periodic normal electric field. We consider certain porous media assumed to be uniform, homogeneous, and isotropic. We analytically and numerically simulate the system of linear evolution equations of such a medium. The linearized problem leads to a system of two Mathieu equations with complex coefficients of the damping terms. We study the effects of the streaming velocity, permeability of the porous medium, and the electrical properties of the flow of a thin layer (film) of liquid on the flow instability. We consider several special cases of such systems. As a special case, we consider a uniform electric field and solve the transition curve equations up to the second order in a small dimensionless parameter. We show that the dielectric constant ratio and also the electric field play a destabilizing role in the stability criteria, while the porosity has a dual effect on the wave motion. In the case of an alternating electric field and a periodic velocity, we use the method of multiple time scales to calculate approximate solutions and analyze the stability criteria in the nonresonance and resonance cases; we also obtain transition curves in these cases. We show that an increase in the velocity and the electric field promote oscillations and hence have a destabilizing effect.  相似文献   

9.
The sufficient conditions for the orbital stability of a periodic solution of the equations of motion of a Kovalevskaya gyroscope in the case of Bobylev-Steklov integrability are obtained.

It is difficult to expect Lyapunov stability for the unsteady motions of a heavy solid having a fixed point since a dependence of the vibrations frequency on the initial conditions is characteristic for the simplest of them, i.e. periodic motions /1/. Moreover, a rougher property of periodic solutions of the Euler-Poisson equations, orbital stability /2/, is not the subject of special investigations in the dynamics of a solid. The algorithm of the present investigation utilizes the treatment ascribed Zhukovskii /3/ of orbital stability as the Lyapunov stability of motion for a special selection of the variable playing the part of time (see /4/ also) and the Chetayev method /5/ of constructing Lyapunov functions from the first integrals of the equations of perturbed motion. This latter circumstance enables the Chetayev method to be put in one series with the methods used in /1, 4, 6–9/, etc.  相似文献   


10.
A definition of strong stability and strong instability is proposed for a linear periodic Hamiltonian system of differential equations under a given non-Hamiltonian perturbation. Such a system is subject to the action of periodic perturbations: an arbitrary Hamiltonian perturbation and a given non-Hamiltonian one. Sufficient conditions for strong stability and strong instability are established. Using the linear periodic Lagrange equations of the second kind, the effect of gyroscopic forces and specified dissipative and non-conservative perturbing forces on strong stability and strong instability is investigated on the assumption that the critical relations of combined resonances are satisfied.  相似文献   

11.
This paper is motivated by the stability problem of nonconstant periodic solutions of time‐periodic Lagrangian equations, like the swing and the elliptic Sitnikov problem. As a beginning step, we will study the linearized stability and instability of nonconstant periodic solutions that are bifurcated from those of autonomous Lagrangian equations. Applying the theory for Hill equations, we will establish a criterion for linearized stability. The criterion shows that the linearized stability depends on the temporal frequencies of the perturbed systems in a delicate way.  相似文献   

12.
A rigorous non-linear analysis of the orbital stability of plane periodic motions (pendulum oscillations and rotations) of a dynamically symmetrical heavy rigid body with one fixed point is carried out. It is assumed that the principal moments of inertia of the rigid body, calculated for the fixed point, are related by the same equation as in the Kovalevskaya case, but here no limitations are imposed on the position of the mass centre of the body. In the case of oscillations of small amplitude and in the case of rotations with high angular velocities, when it is possible to introduce a small parameter, the orbital stability is investigated analytically. For arbitrary values of the parameters, the non-linear problem of orbital stability is reduced to an analysis of the stability of a fixed point of the simplectic mapping, generated by the system of equations of perturbed motion. The simplectic mapping coefficients are calculated numerically, and from their values, using well-known criteria, conclusions are drawn regarding the orbital stability or instability of the periodic motion. It is shown that, when the mass centre lies on the axis of dynamic symmetry (the case of Lagrange integrability), the well-known stability criteria are inapplicable. In this case, the orbital instability of the periodic motions is proved using Chetayev's theorem. The results of the analysis are presented in the form of stability diagrams in the parameter plane of the problem.  相似文献   

13.
The nonlinear vibration responses of functionally graded materials (FGMs) shells with different cone angles under external loads were studied. Firstly, the Voigt model was employed to describe the physical properties along the thickness direction of FGMs conical shells. Then, the motion equations were derived based on the 1st-order shear deformation theory, the von Kármán geometric nonlinearity and Hamilton’s principle. Next, the Galerkin method was applied to discretize the motion equations and the governing equations were simplified into a 1DOF nonlinear vibration differential equation under Volmir’s assumption. Finally, the nonlinear motion equations were solved with the harmonic balance method and the Runge-Kutta method, and the amplitude frequency response characteristic curves of the FGMs conical shells were obtained. The effects of different material distribution functions and different ceramic volume fraction exponents on the amplitude frequency response curves of conical shells were discussed. The bifurcation diagrams of conical shells with different cone angles, as well as time process diagrams and phase diagrams for different excitation amplitudes, were described. The motion characteristics were characterized by Poincaré maps. The results show that, the FGMs conical shells present the nonlinear characteristics of hardening springs. The chaotic motions of the FGMs conical shells are restrained and not prone to motion instability with the increase of the cone angle. The FGMs conical shell present a process from the periodic motion to the multi-periodic motion and then to chaos with the increase of the excitation amplitude. © 2022 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

14.
In this work, we introduce a two-dimensional domain predator-prey model with strong Allee effect and investigate the Turing instability and the phenomena of the emergence of patterns. The occurrence of the Turing instability is ensured by the conditions that are procured by using the stability analysis of local equilibrium points. The amplitude equations (for supercritical case cubic Stuart–Landau equation and for subcritical quintic Stuart–Landau equation) are derived appropriate for each case by using the method of multiple time scale and show that the system supports patterns like squares, stripes, mixed-mode patterns, spots and hexagonal patterns. We obtain the asymptotic solutions to the model close to the onset instability based on the amplitude equations. Finally, numerically simulations tell how cross-diffusion plays an important role in the emergence of patterns.  相似文献   

15.
The problem of orbital stability of a periodic motion of an autonomous two-degreeof- freedom Hamiltonian system is studied. The linearized equations of perturbed motion always have two real multipliers equal to one, because of the autonomy and the Hamiltonian structure of the system. The other two multipliers are assumed to be complex conjugate numbers with absolute values equal to one, and the system has no resonances up to third order inclusive, but has a fourth-order resonance. It is believed that this case is the critical one for the resonance, when the solution of the stability problem requires considering terms higher than the fourth degree in the series expansion of the Hamiltonian of the perturbed motion.Using Lyapunov’s methods and KAM theory, sufficient conditions for stability and instability are obtained, which are represented in the form of inequalities depending on the coefficients of series expansion of the Hamiltonian up to the sixth degree inclusive.  相似文献   

16.
A method is proposed for investigating the oribtal stability of periodic solutions of normal systems of ordinary differential equations. The Lyapunov function is derived from the first integrals of the equations of the perturbed motion and the scalar product of the velocity of motion along the orbit and the perturbation vector. Lypunov's second method was first used in connection with orbital stability in order to study the phase trajectories of systems with two degrees of freedom /1/.  相似文献   

17.
Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.  相似文献   

18.
We deal with the stability problem of resonant rotation of a symmetric rigid body about its center of mass in an elliptical orbit. The resonant rotation is a planar motion such that the body completes one rotation in absolute space during two orbital revolutions of its center of mass. In [1–3] the stability analysis of the above resonant rotation with respect to planar perturbations has been performed in detail.In this paper we study the stability of the resonant rotation in an extended formulation taking into account both planar and spatial perturbations. By analyzing linearized equations of perturbed motion, we found eccentricity intervals, where the resonant rotation is unstable. Outside of these intervals a nonlinear stability study has been performed and subintervals of formal stability and stability for most initial data have been found. In addition, the instability of the resonant rotation was established at several eccentricity values corresponding to the third and fourth order resonances.Our study has also shown that in linear approximation the spatial perturbations have no effect on the stability of the resonant rotation, whereas in a nonlinear system they can lead to its instability at some resonant values of the eccentricity.  相似文献   

19.
We deal with the problem of orbital stability of pendulum-like periodic motions of a heavy rigid body with a fixed point. We suppose that a mass geometry corresponds to the Bobylev-Steklov case. The stability problem is solved in nonlinear setting. In the case of small amplitude oscillations and rotations with large angular velocities the small parameter can be introduced and the problem can be investigated analytically. In the case of unspecified oscillation amplitude or rotational angular velocity the problem is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients.  相似文献   

20.
In this paper a system of three delay differential equations representing a Hopfield type general model for three neurons with two-way (bidirectional) time delayed connections between the neurons and time delayed self-connection from each neuron to itself is studied. Delay independent and delay dependent sufficient conditions for linear stability, instability and the occurrence of a Hopf bifurcation about the trivial equilibrium are addressed. The partition of the resulting parametric space into regions of stability, instability, and Hopf bifurcation in the absence of self-connection is realized. To extend the local Hopf branches for large delay values a particular bidirectional delayed tri-neuron model without self-connection is investigated. Sufficient conditions for global existence of multiple non-constant periodic solutions are obtained for such a model using the global Hopf-bifurcation theorem for functional differential equations due to J. Wu and the Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney, and following the approach developed by Wei and Li.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号