首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
Application of the wavelet Galerkin method (WGM) to numerical solution of nonlinear buckling problems was studied with classical elastic thin rectangular plates. First, the discretized scheme of the von Kármán equation were introduced, then a simple calculation approach to the Jacobian and Hessian matrices based on the WGM was proposed, and the wavelet discretized scheme-based eigenvalue equation method, the extended equation method and the pseudo arc-length method for nonlinear buckling analysis were discussed. Second, the secondary post-buckling equilibrium paths of elastic thin rectangular plates and the effects of aspect ratios, boundary conditions and bi-directional compression on the mode jumping behaviors, were discussed in detail. Numerical results show that, the WGM possesses good convergence for solving buckling loads on rectangular plates, and the obtained equilibrium paths are in good agreement with those from the stability experiments, the 2-step perturbation method and the nonlinear finite element method. Given the feasibility of combination with different bifurcation computation methods, the WGM makes an efficient spatial discretization method for complex nonlinear stability problems of typical plates and shells. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

2.
A closed-form solution of responses of SDOF structures with SPIS-Ⅱ dampers under seismic excitation modeled with the Clough-Pezien spectrum was proposed, and the shock absorption performance and influential factors of this system were studied based on the proposed method. Firstly, the motion equation for the SPIS-Ⅱ damper was established, and the unified expressions of frequency domain solutions of structural responses, such as the structural displacement and the inerter force, were obtained. Secondly, based on the rational expression decomposition and the residue theorem, the quadratic orthogonal equations of the frequency response eigenvalue function and the Clough-Pezien spectrum were obtained respectively, and in turn the quadratic orthogonal equation of the structural response power spectrum was deduced. Thirdly, the concise closed-form solutions of the 0~2nd-order spectral moments of the structural responses were acquired. The proposed method and the virtual excitation method were used to analyze a case respectively, which verifies the correctness of the proposed method. Finally, the proposed method was used to analyze the effects of the inerter parameters on the seismic performances of the structure. The research shows that, the proposed method gives closed-form solutions better than those given by the virtual excitation method in terms of computation efficiency and accuracy. The damping performance will improve with the increase of µm and µξ for a constant µω and the damping performance will reach the optimum for µω=1. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

3.
Based on the homotopy analysis method, the nonlinear vibration of porous functionally graded material (FGM) conveying pipes under generalized boundary conditions was studied. Based on the power-law distribution of the FGM and the Voigt model, the physical properties of the porous pipe material were described. Under the Euler-Bernoulli beam theory and the von Kármán nonlinear theory, and by means of Hamilton’s variational principle, the dynamic control equations and generalized boundary conditions for porous FGM conveying pipes were established. The homotopy analysis method was used to solve the nonlinear vibration characteristics of the porous FGM conveying pipe under generalized boundary conditions. The numerical results show that, the translation spring has little effect on the critical velocity of instability, while the rotation spring increases the critical velocity of instability, making the system more stable; in the nonlinear system, the viscoelastic coefficient does not change the critical velocity; the pipe length, the power-law exponent and the porosity all influence the nonlinear free vibration of the porous FGM conveying pipe. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

4.
Many slender rods in engineering can be modeled as Euler-Bernoulli beams. For the analysis of their dynamic behaviors, it is necessary to establish the dynamic models for the flexible multi-body systems. Geometric nonlinear elements with absolute nodal coordinates help solve a large number of dynamic problems of flexible beams, but they still face such problems as shear locking, nodal stress discontinuity and low computation efficiency. Based on the theory of large deformation beams’ virtual power equations, the functional formulas between displacements and rotation angles at the nodes were established, which can satisfy the deformation coupling relationships. The generalized strains to describe geometric nonlinear effects in this case were derived. Some parameters of boundary nodes were replaced by axial strains and sectional curvatures to obtain a more accurate and concise constraint method for applying external forces. To improve the numerical efficiency and stability of the system’s motion equations, a model-smoothing method was used to filter high frequencies out of the model. The numerical examples verify the rationality and effectiveness of the proposed element. © 2022 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

5.
Analytical solutions, with unique research value, can serve as benchmarks for empirical formulas and numerical methods, a tool for rapid parameter analysis and optimization, and a theoretical basis for experimental designs. Conventional analytical methods, e.g., the Lévy solution method, are only applicable to mechanical problems of plates and shells with opposite simply-supported edges, which, however, may fail to obtain analytical solutions for the issues with complex boundary constraints. In recent years, the finite integral transform method for plate and shell problems was developed to deal with non-Lévy-type plates and shells, but it is still infeasible to solve the mixed boundary constrains-induced complex boundary value problems of higher-order partial differential equations. Herein, for the first time, the finite integral transform method was combined with the sub-domain decomposition technique to solve the free vibrations of rectangular thin plates with mixed boundary constraints. The rectangular plate was first divided into 2 sub-domains according to the mixed boundary constraints, and the 2 sub-domains were solved analytically with the finite integral transform method. Finally, the continuity conditions were introduced to obtain the analytical solution of the original problem. Based on the side spot-welded cantilever plates commonly used in engineering, the free vibration problem of a rectangular thin plate with 1 edge subjected to clamped-simply supported constraints and the other 3 edges free, was analyzed. The obtained natural frequencies and mode shapes are in good agreement with those from the finite element method as well as the solutions in literature, thus verifying the accuracy of the proposed method. The solution procedure of the finite integral transform method can be implemented based on the governing equations without any assumption of the solution form. Therefore, this strict analytical method is widely applicable to complex boundary value problems of higher-order partial differential equations for such mechanical problems of plates and shells. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

6.
In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term ·(u)/((|u|)~(1/2)2+β) of the total variation-based image motion deblurring problem. The large nonlinear system is linearized by fixed point iteration method. An algebraic multigrid method with Krylov subspace acceleration is used to solve the corresponding linear equations as in [7]. The algorithms can restore the image very well. We give some numerical experiments to demonstrate that our difference schemes are efficient and robust.  相似文献   

7.
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.  相似文献   

8.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

9.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

10.
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.  相似文献   

11.
假设温度场与应变场相互耦合,研究了旋转扁薄球壳和锥壳的轴对称非线性热弹振动问题.基于von Krmn理论和热弹性理论,导出了本问题的全部控制方程及其简化形式.应用Galerkin技术进行时空变量分离后,得到了一个关于时间的非线性常微分方程组.根据方程的特点,分别用多尺度法和正则摄动法求得了壳体振动的频率与振幅间特征关系和振幅衰减规律的一次近似解析解,并讨论了壳体几何参数、热弹耦合参数以及边界条件等因素对其非线性热弹耦合振动特性的影响.  相似文献   

12.
借助于变厚度圆薄板非线性动力学变分方程和协调方程,给出了变厚度扁薄锥壳的非线性动力学变分方程和协调方程· 假设薄膜张力由两项组成,将协调方程化为两个独立的方程,选取变厚度扁锥壳中心最大振幅为摄动参数,采用摄动变分法,将变分方程和微分方程线性化· 对周边固定的圆底变厚度扁锥壳的非线性固有频率进行了求解;一次近似得到了变厚度扁锥壳的线性固有频率,三次近似得到了变厚度扁锥壳的非线性固有频率,且绘出了固有频率与静载荷、最大振幅、变厚度参数的特征曲线图· 为动力工程提供了有价值的参考·  相似文献   

13.
In this study, the repeated discontinuous friction between granular material and contact platform and structural nonlinearity of inclined vibration platform giving rise to the vibration flow-aiding unloading is a complicated process, which has significant effects on the dynamic behaviors and flow characteristics of granular material. A simplified mathematical model of the inclined vibration platform and granular material is deduced by mechanical properties. Based on the equations of motion and a good degree of accuracy and applicability of the process with calculated data reported in the literature, the approximate analytical solution and flow properties are investigated by using the modified incremental harmonic balance method and numerical integration method. Moreover, the influences of friction coefficient, excitation amplitude, nonlinear stiffness and inclined angle on the complicated dynamic behaviors are explored and discussed. It is shown that the different motion paths of granular material on inclined vibration platform are observed depending on the different parameters. The increasing friction coefficient has complicated effects on the nonlinear dynamic behaviors of the granular material. The excitation amplitude and nonlinear stiffness can effectively control the flow characteristics of granular material at low excitation frequency but the inclined angle presents opposite property. The research may contribute to improve unloading efficiency, predict the motion state of granule and provide a theoretic foundation for further design the unloading system.  相似文献   

14.
静载荷作用下正交各向异性旋转扁壳的非线性自由振动   总被引:3,自引:1,他引:2  
本文用加权残值法和Lindstedt-Poincare摄动法研究了圆柱型正交各向异性扁薄球壳和锥壳在均布静载荷作用下的轴对称非线性自由振动问题,得到了其非线性固有频率和振幅间的特征关系,并讨论了静载荷及壳体的几何参数和材料参数对其振动特性的影响。  相似文献   

15.
Truncated conical shell is an important structure that has been widely applied in many engineering fields. The present paper studies the internal dynamic properties of a truncated rotary conical shell and considers the intercoupling of the high and low order modals by utilizing the Harmonic Balance Method. To disclose the detailed intercoupling characteristics of the high order and low order modals of the system, a truncated shallow shell is studied and the internal response properties of the system are investigated by using the Multiple Scale Method. The nonlinear dynamic stabilities of the system are also analyzed using the Incrementation Harmonic Balance Method. Abundant dynamic characteristics are found in the research. The research results show that the high order modals of rotating conical shells have a significant effect on the curves of vibration amplitude and frequency of the shells.  相似文献   

16.
扁锥面网壳非线性动力分岔与混沌运动   总被引:2,自引:0,他引:2  
对曲面为正三角形网格的3向扁锥面单层网壳,用拟壳法建立了轴对称非线性动力学方程.在几何非线性范围内给出了协调方程.网壳在周边固定条件下,通过Galerkin作用得到一个含2次、3次的非线性微分方程,通过求Floquet指数讨论了分岔问题.为了研究混沌运动,对一类非线性动力系统的自由振动方程进行了求解,继之给出了单层扁锥面网壳非线性自由振动微分方程的准确解,通过求Melnikov函数,给出了发生混沌的临界条件,通过数值仿真也证实了混沌运动的存在.  相似文献   

17.
正交各向异性旋转扁壳的非线性振动*   总被引:3,自引:2,他引:1  
本文提出一种时间模态假设,由此导出描述圆柱正交各向异性薄扁球壳和锥壳非线性轴对称自由振动的非线性耦合的代数和微分特征值方程组.我们求出了该方程组的近似解析解,并获得壳体振动的幅频响应关系的渐近展开式.文中还讨论了壳体的几何及材料参量对其振动性态的影响.  相似文献   

18.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

19.
应用轴对称旋转扁壳的非线性大挠度动力学方程,研究了波纹扁壳在均布载荷作用下的非线性受迫振动问题.采用格林函数方法,将扁壳的非线性偏微分方程组化为非线性积分微分方程组.再使用展开法求出格林函数,即将格林函数展开为特征函数的级数形式,积分微分方程就成为具有退化核的形式,从而容易得到关于时间的非线性常微分方程组.针对单模态振形,得到了谐和激励作用下的幅频响应.作为算例,研究了正弦波纹扁球壳的非线性受迫振动现象.该文的解答可供波纹壳的设计参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号