首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The crystalline, surface, and optical properties of the (1 0 1¯ 3¯) semipolar GaN directly grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) were investigated. It was found that the increase of V/III ratio led to high quality (1 0 1¯ 3¯) oriented GaN epilayers with a morphology that may have been produced by step-flow growth and with minor evidence of anisotropic crystalline structure. After etching in the mixed acids, the inclined pyramids dominated the GaN surface with a density of 2×105 cm−2, revealing the N-polarity characteristic. In the low-temperature PL spectra, weak BSF-related emission at 3.44 eV could be observed as a shoulder of donor-bound exciton lines for the epilayer at high V/III ratio, which was indicative of obvious reduction of BSFs density. In comparison with other defect related emissions, a different quenching behavior was found for the 3.29 eV emission, characterized by the temperature-dependent PL measurement.  相似文献   

2.
The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.  相似文献   

3.
Semi-polar (1 1 2¯ 2) GaN layers were selectively grown by metal organic chemical vapor phase epitaxy on patterned Si (3 1 1) substrates without SiO2 amorphous mask. The (1 1 2¯ 2) GaN layers could be selectively grown only on Si (1 1 1) facets when the stripe mask width was narrower than 1 μm even without SiO2. Inhomogeneous spatial distribution of donor bound exciton (DBE) peak in low-temperature cathodoluminescence (CL) spectra was explained by the difference of growth mode before and after the coalescence of stripes. It was found that the emission intensity related crystal defects is drastically decreased in case of selective growth without SiO2 masks as compared to that obtained with SiO2 masks.  相似文献   

4.
We succeeded in growing high-crystalline-quality thick (1 0 1¯ 1¯) Ga0.92In0.08N films on a grooved (1 0 1¯ 1¯) GaN/(1 0 1¯ 2¯) 4H-SiC underlying layer. We also fabricated GaInN/GaN multiple quantum wells (MQWs) with a peak wavelength of 580 nm on a high-crystalline-quality thick GaInN film. The photoluminescence intensity of the MQWs is about six times higher than that of MQWs grown on planar GaN and twice as high as that of MQWs grown on a GaN underlying layer having the same grooved structure.  相似文献   

5.
Redistribution behavior of magnesium (Mg) in the N-terminated (1 1¯ 0 1) gallium nitride (GaN) has been investigated. A nominally undoped GaN layer was grown on a heavily Mg-doped GaN template by metalorganic vapor-phase epitaxy (MOVPE). Mg dopant profiles were measured by secondary ion mass spectrometry (SIMS) analysis. A slow decay of the Mg concentration was observed in the nominally undoped GaN layer due to the surface segregation. The calculated decay lengths of the (1 1¯ 0 1) GaN are ∼75–85 nm/decade. These values are shorter than the decay length determined in the sample grown on the Ga-terminated (0 0 0 1) GaN. This result indicates that Mg exhibited weak surface segregation in the (1 1¯ 0 1) GaN as compared to the (0 0 0 1) GaN. The weak surface segregation is in agreement with the high efficiency of Mg incorporation on the (1 1¯ 0 1) face. The high density of hydrogen was obtained in the (1 1¯ 0 1) GaN, which might enhance the Mg incorporation.  相似文献   

6.
The growth of GaN based structures on Si(1 1 0) substrates by molecular beam epitaxy using ammonia as the nitrogen precursor is reported. The structural, optical and electrical properties of such structures are assessed and are quite similar to the ones obtained on Si(1 1 1) in-spite of the very different substrate surface symmetry. A threading dislocation density of 3.7×109 cm−2 is evaluated by transmission electron microscopy, which is in the low range of typical densities obtained on up to 2 μm thick GaN structures grown on Si(1 1 1). To assess the potential of such structure for device realization, AlGaN/GaN high electron mobility transistor and InGaN/GaN light emitting diode heterostructures were grown and their properties are compared with the ones obtained on Si(1 1 1).  相似文献   

7.
Using an AlInN intermediate layer, GaN was grown on (1 1 1)Si substrate by selective metalorganic vapor phase epitaxy. The variation of the surface morphology was investigated as a function of the In composition and thickness of the AlInN layer. It was found that the In composition in the AlInN layer was a function of the growth temperature and thickness. Because of the small band offset at the AlInN/Si hetero-interface, we have achieved a low series resistance of the order of 9 Ω (0.0036 Ω cm2) across the GaN/AlInN/AlN/Si layer structure.  相似文献   

8.
Epitaxial lateral overgrowth was applied to a-plane GaN on r-plane sapphire using SiO2 stripe masks oriented parallel to [0 1¯ 1 1]. Coalescence and defect distribution was studied using scanning electron microscopy and cathodoluminescence. Defects, i.e., threading dislocations and basal plane stacking faults from the template propagate into the overgrown layer through the mask openings. Stacking faults spread into the whole overgrown layer, whereas threading dislocations are laterally confined in the region above the mask where a part of them is terminated at the inclined coalescence boundary. Lateral overgrowth and dislocation termination at the coalescence boundary leads to an improvement in luminescence intensity and crystal quality, in comparison to the template. The measured XRD rocking curve FWHM were 453″ with incidence along the [0 0 0 1] c-direction and 280″ with incidence along the [0 1 1¯ 0] m-direction.  相似文献   

9.
Non-polar a-plane (1 1 2¯ 0) GaN films were grown on r-plane sapphire by metal–organic vapor phase epitaxy and were subsequently annealed for 90 min at 1070 °C. Most dislocations were partial dislocations, which terminated basal plane stacking faults. Prior to annealing, these dislocations were randomly distributed. After annealing, these dislocations moved into arrays oriented along the [0 0 0 1] direction and aligned perpendicular to the film–substrate interface throughout their length, although the total dislocation density remained unchanged. These changes were accompanied by broadening of the symmetric X-ray diffraction 1 1 2¯ 0 ω-scan widths. The mechanism of movement was identified as dislocation glide, occurring due to highly anisotropic stresses (confirmed by X-ray diffraction lattice parameter measurements) and evidenced by macroscopic slip bands observed on the sample surface. There was also an increase in the density of unintentionally n-type doped electrically conductive inclined features present at the film–substrate interface (as observed in cross-section using scanning capacitance microscopy), suggesting out-diffusion of impurities from the substrate along with prismatic stacking faults. These data suggest that annealing processes performed close to film growth temperatures can affect both the microstructure and the electrical properties of non-polar GaN films.  相似文献   

10.
Microstructures were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in order to clarify the dislocation behavior in AlGaN layers HVPE-grown on a stripe-patterned sapphire (0 0 0 1) substrate. SEM observation revealed very clearly the growth process: if AlGaN starting to grow from the side-wall of patterned substrate develops, a poly-crystalline region is formed up to the top surface of thin film. When the growth from the upper side (terrace) of patterned substrate is predominant, AlGaN becomes a single-crystalline layer with a flat surface. Threading dislocations (TDs) generated from the interface to the terrace propagate upwards, inclining to the wing regions. They are scarcely merged with one another. The AlGaN layer on the patterned substrate with a wider groove has a smaller density of dislocation to be about 1×109 cm−2. There are four types of dislocations: (1) TDs inclining toward 〈1 1¯ 0 0〉 normal to their Burgers vector B; (2) TDs inclining toward 〈2 1¯ 1¯ 0〉 on their slip-plane; (3) TDs inclining largely or horizontal dislocations (HDs) along 〈2 1¯ 1¯ 0〉 and (4) roundly curved HDs lying on (0 0 0 1) plane. Some TDs change the direction of inclination, suggesting that internal stress changed intricately during the growth.  相似文献   

11.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

12.
The activation energies for Ga and N desorption from a GaN surface were calculated using the density functional theory to understand the detailed decomposition process of the hydrogen terminated GaN(0 0 0 1) Ga and N surfaces under a hydrogen atmosphere. It was found that the Ga atoms on the hydrogen terminated GaN(0 0 0 1) Ga surface desorbed as GaH molecules from the surface while the N atoms on the hydrogen terminated GaN(0 0 0 1) N surface desorbed as NH3 molecules from the surface. The desorption energies of GaH and NH3 on the hydrogen terminated surface were more consistent with the previous experimental values than those on the ideal surface. These results suggest that the initial surface structure of the GaN(0 0 0 1) surface is terminated with hydrogen.  相似文献   

13.
GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.  相似文献   

14.
GaN nanodots (NDs) are obtained by Ga metallic droplet formation on Si (1 1 1) substrates followed by their nitridation. The size and density of Ga droplets and GaN NDs can be controlled by varying the growth temperature within the range 514–640 °C. Atomic force microscopy (AFM) investigation of Ga droplets shows an increase in the average diameter with temperature. The average diameter of GaN NDs increases with growth temperature while their density decreases more than one order of magnitude. In addition, the formation of a GaN crystallite rough layer on Si, in-between NDs, indicates that a spreading mechanism takes place during the nitridation process. High-resolution transmission electron microscopy (HRTEM) is used for the investigation of shape, crystalline quality and surface distribution of GaN dots. X-ray photoelectron spectroscopy (XPS) results confirm that Ga droplets that are transformed into GaN NDs spread over the sample surface during nitridation.  相似文献   

15.
The high dislocation density (2×107/cm2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×106/cm2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.  相似文献   

16.
Adopting anisotropy etching method, a (1 1 1) facet of Si is obtained on a Si substrate and selective area growth (SAG) of GaN is performed with metal-organic vapor phase epitaxy on the facet. The epitaxial lateral overgrowth of (1 1¯ 0 1), (1 1 2¯ 2) GaN is investigated on (0 0 1) and (1 1 3) Si substrate, respectively, and the incorporation properties of Si, C, and Mg elements are discussed in relation to the atomic configuration on the surface. Analyzing the optical and electrical properties of C-doped (1 1¯ 0 1) GaN layer, it is shown that carbon creates a shallow acceptor level. On the thus prepared (1 1¯ 0 1) GaN layer, a light emitting diode (LED) with a C-doped p-type layer is fabricated.  相似文献   

17.
The mechanism of nitridation of (0 0 1) GaAs surface using RF-radical source was systematically studied with changing substrate temperature, nitridation time and supplying As molecular beam. It was found from atomic forth microscopy (AFM) measurements that supplying As is very important to suppress the re-evaporation of As atoms and to keep the surface smooth. Reflection high-energy electron diffraction (RHEED) measurements shows that surface lattice constant (SLC) of GaAs of 0.565 nm decreases with increasing the substrate temperature and that it finally relaxes to the value of c-GaN of 0.452 nm, at 570 °C in both [1 1 0] and [1¯ 1 0] directions without concerning with the supply of As molecular beam. But, in the medium temperature range (between 350 and 520 °C), SLC of [1 1 0] direction was smaller than that of [1¯ 1 0] direction. This suggests a relation between the surface structure and the relaxing mechanism of the lattice. The valence band discontinuity between the nitridated layer and the GaAs layer was estimated by using X-ray photoemission spectroscopy (XPS). It was between 1.7 and 2.0 eV, which coincides well with the reported value of c-GaN of 1.84 eV. This suggests that the fabricated GaN layer was in cubic structure.  相似文献   

18.
F. Zhao  J. Ma  B. Weng  D. Li  G. Bi  A. Chen  J. Xu  Z. Shi 《Journal of Crystal Growth》2010,312(19):2695-2698
PbSe thin film was grown on a patterned Si substrate with (1 1 1)-orientation by molecular-beam epitaxy (MBE). On the mesa, a low dislocation density of 9×105 cm−2 was confirmed by the etch-pits density (EPD) wet-etching technique. The photoluminescence (PL) intensity at room temperature from the low dislocation PbSe film was much higher than that from the PbSe film grown on the planar area, which further indicated the high-quality of PbSe thin film grown on patterned Si substrate.  相似文献   

19.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

20.
We demonstrate hexagonal boron nitride (h-BN) epitaxial growth on Ni(1 1 1) substrate by molecular beam epitaxy (MBE) at 890 °C. Elemental boron evaporated by an electron-beam gun and active nitrogen generated by a radio-frequency (RF) plasma source were used as the group-III and -V sources, respectively. Reflection high-energy electron diffraction revealed a streaky (1×1) pattern, indicative of an atomically flat surface in the ongoing growth. Correspondingly, atomic force microscopy images exhibit atomically smooth surface of the resulting h-BN film. X-ray diffraction characterization confirmed the crystallinity of the epitaxial film to be h-BN, and its X-ray rocking curve has a full-width at half-maximum of 0.61°, which is the narrowest ever reported for h-BN thin film. The epitaxial alignments between the h-BN film and the Ni substrate were determined to be [0 0 0 1]h−BN∥[1 1 1]Ni, [1 1 2¯ 0]h−BN∥[1¯ 1 0]Ni, and [1 1¯ 0 0]h−BN∥[1¯ 1¯ 2]Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号