首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro and nano devices incorporating bistable structural elements have functional advantages including the existence of several stable configurations at the same actuation force, extended working range, and tunable resonant frequencies. In this work, after a short review of operational principles of bistable micro devices, results of a theoretical and numerical investigation of the transient dynamics of an initially curved, shallow, double-clamped micro beam, actuated by distributed electrostatic and inertial forces are presented. Due to the unique combination of mechanical and electrostatic nonlinearities, typically not encountered in large scale structures, the device exhibits sequential snap-through and electrostatic (pull-in) instabilities. A phase plane analysis, performed using a consistently derived lumped model along with the numerical results, indicate that critical voltages corresponding to the dynamic snap-through and pull-in instabilities are lower than their static counterparts, while the minimal curvature required for the appearance of the dynamic snap-through is higher than in the static case. The boundaries of the bistability region of a quasi-statically loaded beam are found in terms of the geometrical and loading parameters and are shown to be bounded from above by the dynamic pull-in instability. Some of the post-buckling states cannot be reached under suddenly applied or quasi-statically increasing voltages: specially tailored loading schemes are suggested for realization of these configurations often beneficial in applications.  相似文献   

2.
The symmetric and asymmetric buckling of an initially curved micro beam subjected to an axial pre-stressing load and transversal distributed electrostatic force is studied. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with buckling modes of a straight beam used as the base functions. The criteria of symmetric limit point buckling and of non-symmetric bifurcation are derived in terms of the geometric parameters of the beam and the axial load. Two symmetry breaking conditions, defining the relations between the axial load and the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one, are obtained. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric response curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the symmetric response curve. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict symmetric and non-symmetric buckling in electrostatically actuated curved pre-stressed micro beams. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. The nature of the latter and the relations between it and the symmetry breaking criteria are found to go through a prominent qualitative change as the initial distance between the beam and the electrode, characterizing the electrostatic force, changes.  相似文献   

3.
An investigation is performed into the nonlinear pull-in behavior of a cantilever-type nano-mechanical electrostatic actuator. In performing the analysis, the actuator is modeled as an Euler–Bernoulli beam and the influence of surface effects, the fringing field effect and the Casimir force effect are taken into explicit account. In general, analyzing the dynamic behavior of nanoscale electrostatic devices is challenging due to the nonlinear coupling of the electrostatic force and Casimir force. In the present study, this problem is resolved by using a hybrid computational scheme comprising the differential transformation method and the finite difference approximation technique. The feasibility of the proposed approach is demonstrated by the two cantilever-type micro-beams when actuated by a DC voltage. The numerical results show that the present results for the pull-in voltage deviate by no more than 1.47% from those presented in the literature using a different scheme. In addition, it is shown that surface effects play a significant role in determining the static deflection and pull-in voltage of the cantilever beam nano-beam. In general, the results confirm that the hybrid differential transformation/finite difference approximation method provides an accurate and computationally efficient means of simulating the nonlinear electrostatic behavior of nanostructure systems.  相似文献   

4.
This paper presents postbuckling behaviors of a variable-arc-length (VAL) circular curved beam subjected to an end follower force. One end of the VAL circular curved beam is hinged while the other end is supported by a frictionless slot, which is fixed horizontally and vertically but is allowed to rotate corresponding to loading direction. When the VAL circular curved beam is deformed, the total arc-length of the circular curved beam varies. Two approaches have been applied for the solution of this problem. The first approach is an elliptic integrals method based on elastica theory, which yields the exact closed-form solution in terms of the first and second kinds of elliptic integrals. For validation of the results, the shooting method is employed for a numerical solution by developing the set of nonlinear governing differential equations together with boundary conditions, and then integrating them by using the fourth-order Runge–Kutta algorithm. The results from both approaches are in very good agreement. From the results, it is found that the VAL circular curved beam subjected to an end follower force can be deformed in many mode shapes. For the first and third modes, the beam exhibits both stable and unstable configurations, whereas for the second mode only an unstable configuration exists. The influences of initial curvature on the critical load and the deformed configurations are highlighted.  相似文献   

5.
The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed nonlinear deflection-dependent electrostatic force is studied. In order to highlight the symmetry breaking phenomenon and the approach to its analysis, the subsidiary simplified problem of a curved beam attached to a linearly elastic foundation, and subjected to uniformly distributed “mechanical” load, which is independent of deflections, is addressed first. The analysis is based on a two degrees of freedom reduced order (RO) model resulting from the Galerkin decomposition with linear undamped eigenmodes of a straight beam used as the base functions. Simple approximate expressions are derived defining the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric limit point buckling curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically actuated bistable micro beams.  相似文献   

6.
The dynamic pull-in instability of double clamped microscale beams actuated by a suddenly applied distributed electrostatic force and subjected to non-linear squeeze film damping is investigated. A reduced order model is built using the Galerkin decomposition with undamped linear modes as base functions and verified through comparison with numerical finite differences solution. The stability analysis of a beam actuated by one and two electrodes symmetrically located at two sides of the beam and operated by a step-input voltage is performed by evaluating the largest Lyapunov exponent, the sign of which defines the character of the response. It is shown that this approach provides an efficient quantitative criterion for the evaluation of dynamic pull-in instability, especially when combined with compact reduced order models. Based on the Lyapunov exponent criterion, the influence of various parameters on the beam dynamic stability is investigated.  相似文献   

7.
Exact solution and stability of postbuckling configurations of beams   总被引:1,自引:0,他引:1  
We present an exact solution for the postbuckling configurations of beams with fixed–fixed, fixed–hinged, and hinged–hinged boundary conditions. We take into account the geometric nonlinearity arising from midplane stretching, and as a result, the governing equation exhibits a cubic nonlinearity. We solve the nonlinear buckling problem and obtain a closed-form solution for the postbuckling configurations in terms of the applied axial load. The critical buckling loads and their associated mode shapes, which are the only outcome of solving the linear buckling problem, are obtained as a byproduct. We investigate the dynamic stability of the obtained postbuckling configurations and find out that the first buckled shape is a stable equilibrium position for all boundary conditions. However, we find out that buckled configurations beyond the first buckling mode are unstable equilibrium positions. We present the natural frequencies of the lowest vibration modes around each of the first three buckled configurations. The results show that many internal resonances might be activated among the vibration modes around the same as well as different buckled configurations. We present preliminary results of the dynamic response of a fixed–fixed beam in the case of a one-to-one internal resonance between the first vibration mode around the first buckled configuration and the first vibration mode around the second buckled configuration.  相似文献   

8.
I. INTRODUCTION For capacitor-like microelectromechanical systems (MEMS) structure[1??6], the voltage betweenthe structure and substrate causes attractive force. The sources of the voltage can be an arti?ciallymounted device[2 , 7??9] or the temporar…  相似文献   

9.
This paper presents recent experimental results on the switching of a simply supported buckled beam. Moreover, the present work is focussed on the experimental validation of a switching mechanism of a bistable beam presented in details in Camescasse et al. (2013). An actuating force is applied perpendicularly to the beam axis. Particular attention is paid to the influence of the force position on the beam on the switching scenario. The experimental set-up is described and special care is devoted to the procedure of experimental tests highlighting the main difficulties and how these difficulties have been overcome. Two situations are examined: (i) a beam subject to mid-span actuation and (ii) off-center actuation. The bistable beam responses to the loading are experimentally determined for the buckling force and actuating force as a function of the vertical position of the applied force (displacement control). A series of photos demonstrates the scenarios for both situations and the bifurcation between buckling modes are clearly shown, as well. The influence of the application point of the force on the bifurcation force is experimentally studied which leads to a minimum for the bifurcation actuating force. All the results extracted from experimental tests are compared to those coming from the modeling investigation presented in a previous work (Camescasse et al., 2013) which ascertains the proposed model for a bistable beam.  相似文献   

10.
离心场中纵向悬臂梁的大范围分岔分析   总被引:2,自引:0,他引:2  
肖世富  陈滨 《力学学报》2000,32(5):559-565
采用打靶法研究了离心场中纵向悬臂梁的大范围失稳与分岔问题。分析结果证实:随着参数a(离心臂长与梁长之比)的变化,梁平衡解可能发生三种分岔现象。文中给出了平衡解的分岔形态,并发现了梁分岔解的单向跳跃现象,即突变现象。  相似文献   

11.
An approximate theory based on assumed strain and displacement fields, the Rayleigh–Ritz technique, and virtual work is used to predict the snap-through forces and moments for three families of unsymmetric fiber-reinforced composite laminates. Unsymmetric laminates generally have two stable equilibrium configurations when cooled from their elevated cure temperature, and it is the moment required to snap the laminate from one stable configuration to the other that is the subject of this paper. A simple force-controlled experiment is described which is used to measure the snap-through moment and the characteristics of the configuration change, by way of strains, in four laminates. The correlation between predicted results and experimental measurements is quite good, both in terms of moment levels and in terms of strain response.  相似文献   

12.
In this paper, we propose the design of an ohmic contact RF microswitch with low voltage actuation, where the upper and lower microplates are displaceable. We develop a mathematical model for the RF microswitch made up of two electrostatically actuated microplates; each microplate is attached to the end of a microcantilever. We assume that the microbeams are flexible and that the microplates are rigid. The electrostatic force applied between the two microplates is a nonlinear function of the displacements and applied voltage. We formulate and solve the static and eigenvalue problems associated with the proposed microsystem. We also examine the dynamic behavior of the microswitch by calculating the limit-cycle solutions. We discretize the equations of motion by considering the first few dominant modes in the microsystem dynamics. We show that only two modes are sufficient to accurately simulate the response of the microsystem under DC and harmonic AC voltages. We demonstrate that the resulting static pull-in voltage and switching time are reduced by 30 and 45%, respectively, as compared to those of a single microbeam-microplate RF-microswitch. Finally, we investigate the global stability of the microswitch using different excitation conditions.  相似文献   

13.
The instability of functionally graded material (FGM) structures is one of the major threats to their service safety in engineering applications. This paper aims to clarify a long-standing controversy on the thermal instability type of simply-supported FGM beams. First, based on the Euler-Bernoulli beam theory and von Kármán geometric nonlinearity, a nonlinear governing equation of simply-supported FGM beams under uniform thermal loads by Zhang's two-variable method is formulated. Second, an approximate analytic solution to the nonlinear integro-differential boundary value problem under a thermal-induced inhomogeneous force boundary condition is obtained by using a semiinverse method when the coordinate axis is relocated to the bending axis (physical neutral plane), and then the analytical predictions are verified by the differential quadrature method (DQM). Finally, based on the free energy theorem, it is revealed that the symmetry breaking caused by the material inhomogeneity can make the simply-supported FGM beam under uniform thermal loads occur snap-through postbuckling only in odd modes; furthermore, the nonlinear critical load of thermal buckling varies non-monotonically with the functional gradient index due to the stretching-bending coupling effect. These results are expected to provide new ideas and references for the design and regulation of FGM structures.  相似文献   

14.
Nonlinear modal interactions in the forced vibrations of a thermally loaded pre-buckled annular plate with clamped–clamped immovable boundary conditions are investigated. The mechanism responsible for the interaction is a combination internal resonance involving the natural frequencies of the three lowest axisymmetric modes. The in-plane thermal load acting on the plate is assumed to be axisymmetric and the plate is externally excited by a harmonic force. The nonlinear von Kármán plate equations along with the heat conduction equation are combined to model the behavior of the system. An analytical/numerical approach is used to examine the plate vibrations to a harmonic excitation near primary resonance of one of the modes.  相似文献   

15.
The multistability of composite thin structures has shown potential for morphing applications. The present work combines a Ritz model with path-following algorithms to study bistable plates’ behaviour. Classic low-order Ritz models predict stable shapes’ geometry with reasonable accuracy. However, they may fail when modelling other aspects of the elastic structural behaviour. A refined higher-order model is here presented. In order to improve the inherently poor conditioning properties of Ritz approximations of slender structures, a non-dimensional version of Classical Plate Lamination Theory with von Kármán nonlinear strains is developed and presented. In the current approach, we continue numerical solutions in parameter space, that is, we path-follow equilibrium configurations as the control parameter varies, find stable and unstable configurations and identify bifurcations. The numerics are carried out using a set of in-house Matlab® routines for numerical continuation. The increased degrees of freedom within the model are shown to accurately reflect buckling loads and provide useful insight into the relative importance of different aspects of nonlinear behaviour. Finally, the complex, experimentally observed snap-through geometry is captured analytically for the first time. Results are validated against finite elements analysis throughout the course of the paper.  相似文献   

16.
Bistable structures, such as buckled beams or plates, are characterized by a two-well potential. Their nonlinear properties are currently exploited in actuators design (e.g. MEMS micropumps, switches, memory cells) to produce relatively high displacements and forces with low actuation energies. We investigate the use of distributed multiparameter actuation to control the buckling and postbuckling behavior of a three-layer piezoelectric beam pinned at either end. A two-parameter bending actuation controls the transversal motion, whilst an axial actuation and a beam end-shortening modulate the tangent bending stiffness. The postbuckling behavior is studied by reducing to a 2 dof system a nonlinear extensible elastica model. When the bending actuation is spatially symmetric, the postbuckling phenomena are analogue to those obtained for a transversal midspan force, being characterized by a snap-through instability. The use of a two-parameter actuation opens new transition scenarios, where it is possible to get true quasi-static transitions between the two specular equilibria of the buckled beam, without any instability phenomenon. The efficiencies of these different transition paths are discussed in terms of energetic requirements and stability properties. A numerical example shows the technical feasibility of the proposed actuation technique.  相似文献   

17.
We study the thermal force bending of an elastoplastic three-layer beam with a rigid filler; the beam is connected with an elastic foundation. The broken normal hypothesis is adopted to describe the kinematics of a packet nonsymmetric with respect to the thickness. The foundation reaction is described by Winkler’s model. The system of equilibrium equations and its exact solution in displacements are obtained and numerical results for a three-layer metal-polymeric beam are presented.  相似文献   

18.
在曲梁变形后以弧长为参数的自然坐标系中,利用曲梁大变形分析理论,建立了具有任意初始构型的微电驱动器大变形电动力学分析的数学模型,并采用微分求积法(DQM)进行空间离散,得到了一组具有强非线性的微分-代数系统方程,运用Petzold-Gear BDF方法进行时间域内的求解。研究了MEMS驱动器在电场力作用下的瞬态动力学特性,包括跳跃(snap-through)和吸合(pull-in)现象,并与已有实验结果进行了比较。  相似文献   

19.
Analytical and experimental procedures are used to investigate the large deformation of an initially deformed elastic rod subject to longitudinal and gravitational loads. The ends of the rod rest on simple supports and are connected by a linear spring. Predictions of the system's large deformation behavior, including snap-through from a buckled configuration to a lower-energy equilibrium state, are obtained through a direct application of the minimum potential energy principle. The minimization is performed using Powell's optimization routine. Analytically determined values of displacement are compared with the exact solution for the special case of an ideal column, and with experimental results for various rod/spring configurations. A simplified approach for predicting snap-through is described in the Appendix.  相似文献   

20.
The present paper describes an improved version of the elliptic averaging method that provides a highly accurate periodic solution of a non-linear system based on the single-degree-of-freedom Duffing oscillator with a snap-through spring. In the proposed method, the sum of the Jacobian elliptic delta and zeta functions is used as the generating solution of the averaging method. The proposed method can be used to obtain the non-odd-order solution, which includes both even- and odd-order harmonic components. The stability analysis for the approximate solution obtained by the present method is also discussed. The stability of the solution is determined from the characteristic multiplier based on Floquet’s theorem. The proposed method is applied to a fundamental oscillator in a non-linear system. The numerical results demonstrate that the proposed method is very effective for analyzing the periodic solution of half-swing mode for systems based on Duffing oscillators with a snap-through spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号