首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The linkage isomers [Re(6)Se(8)(PEt(3))(5)(1,5-MeN(4)C)](+) and [Re(6)Se(8)(PEt(3))(5)(2,5-MeN(4)C)](+) were generated upon reaction of tetrabutylammonium azide with the corresponding acetonitrile complex, [Re(6)Se(8)(PEt(3))(5)(NCCH(3))](2+); these are the first (tetrazolato)rhenium complexes reported to date.  相似文献   

2.
The reactions of the previously reported cluster complexes [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I, trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)], and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)] with the [Re(6)(mu(3)-Se)(8)](2+) core with CO in the presence of AgSbF(6) afforded the corresponding cluster carbonyls [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) (), trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (), and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (). Infrared spectroscopy indicated weakening of the bond in CO, suggesting the existence of backbonding between the cluster core and the CO ligand(s). Electrochemical studies focusing on the reversible, one-electron oxidation of the cluster core revealed a large increase in the oxidation potential upon going from the acetonitrile derivatives to their carbonyl analogs, consistent with the depleted electron density of the cluster core upon CO ligation. Disparities between the IR spectra and oxidation potential between and indicate that electronic differences exist between sites trans and cis to the location of a ligand of interest. The active role played by the Se atoms in influencing the cluster-to-CO bonding interactions is suggested through this result and density functional (DF) computational analysis. The computations indicate that molecular orbitals near the HOMO account for backbonding interactions with a high percentage of participation of Se orbitals.  相似文献   

3.
Gray TG  Holm RH 《Inorganic chemistry》2002,41(16):4211-4216
The site-differentiated, cyanide-substituted hexanuclear rhenium(III) selenide clusters cis- and trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)] and [Re(6)Se(8)(PEt(3))(5)(CN)](+) have been prepared from heterogeneous reactions of the corresponding iodo clusters with AgCN in refluxing chloroform. Isolated yields are 68%, 46%, and 64% for cis-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], and [Re(6)Se(8)(PEt(3))(5)(CN)](+), respectively. The new compounds are air- and water-stable and are characterized by X-ray diffraction crystallography, (31)P NMR and IR spectroscopies, and FAB mass spectrometry. In related work, the solvent exchange rates of two site-differentiated monosolvate clusters, [Re(6)Se(8)(PEt(3))(5)(MeCN)](SbF(6))(2) and [Re(6)Se(8)(PEt(3))(5)(Me(2)SO)](SbF(6))(2), in neat solvents were measured by (1)H NMR. These clusters are substitutionally inert; k approximately 10(-)(5)-10(-)(6) s(-)(1) at 318 K. Activation parameters indicate a dissociative ligand exchange mechanism; DeltaH() values obtained from least-squares fitting of temperature-dependent kinetics data exceed RT by a factor of ca. 50 over the temperature range studied. These results demonstrate that the substitutional lability encountered in a previous study of cluster photophysics (Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. Inorg. Chem. 1999, 38, 5932) cannot result from ground-state thermal reactions.  相似文献   

4.
The reaction between the previously reported site-differentiated cluster solvate [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(MeCN)](SbF(6))(2) (1) with pyridyl-based ditopic ligands 4,4'-trimethylenedipyridine (2), 1,2-bis(4-pyridyl)ethane (3), and (E)-1,2-bis(4-pyridyl)ethene (4) afforded cluster complexes of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](SbF(6))(2) (5-7), where L represents one of the pyridyl-based ligands. Reacting these cluster complex-based ligands with the fully solvated cluster complex [Re(6)(mu(3)-Se)(8)(MeCN)(6)](SbF(6))(2) (8) produced dendritic arrays of the general formula {Re(6)(mu(3)-Se)(8)[Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](6)}(SbF(6))(14) (9-11), each featuring six circumjacent [Re(6)(mu(3)-Se)(8)(PEt(3))(5)](2+) units bridged to a [Re(6)(mu(3)-Se)(8)](2+) core cluster by the pyridyl-based ligands. Electrochemical studies using a thin-layer electrochemical cell revealed cluster-based redox events in these cluster arrays. For 9 (L = 2), one reversible oxidation event corresponding to the removal of 7 electrons was observed, indicating noninteraction or extremely weak interactions between the clusters. For 10 (L = 3), two poorly resolved oxidation waves were found. For 11 (L = 4), two reversible oxidation events, corresponding respectively to the removal of 1 and 6 electrons, were observed with the 1-electron oxidation event occurring at a potential 150 mV more positive than the 6-electron oxidation. These electrochemical studies suggest intercluster coupling in 11 via through-bond electronic delocalization, which is consistent with electronic spectroscopic studies of this same molecule.  相似文献   

5.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

6.
Orto PJ  Nichol GS  Wang R  Zheng Z 《Inorganic chemistry》2007,46(21):8436-8438
The first [Re(6)(mu(3)-Se)(8)](2+) core-containing cluster carbonyls, [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) and trans-[Re(6)(mu(3)-Se)(8)(PEt(3))4(CO)(2)][SbF(6)](2), were produced by reacting [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I and trans-[Re(6)(mu(3)-Se)8(PEt(3))(4)I2], respectively, with AgSbF(6) in CO-saturated dichloromethane solutions. Spectroscopic and crystallographic studies suggest significant cluster-to-CO back-donation in these novel cluster derivatives and interesting electronic structures. Thermal and photolytic studies of the mono-carbonyl complex revealed its interesting and synthetically useful reactivity in producing new cluster derivatives.  相似文献   

7.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

8.
The addition of methanol and ethanol to the previously reported cluster solvates [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 and trans-[Re6(mu3-Se)8(PEt3)4(CH3CN)2][SbF6]2 afforded three cluster complexes with imino ester ligands: {Re6(mu3-Se)8(PEt3)5[HN=C(OCH3)(CH3)]}(SbF6)2, {Re6(mu3-Se)8(PEt3)5[HN=C(OCH2CH3)(CH3)]}{SbF6}2, and trans-{Re6(mu3-Se)8(PEt3)4[HN=C(OCH3)(CH3)]2}{SbF6}2. In all cases, predominant formation of the Z isomers was observed.  相似文献   

9.
The reactions of nitrile complexes of the [Re(6)(μ(3)-Se)(8)](2+) core-containing clusters, [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(CH(3)CN)(6-n)](2+) [n = 5 (1); n = 4, cis- (2) and trans- (3); n = 0 (4)], with organic azides C(6)H(5)CH(CH(3))N(3) and C(6)H(5)CH(2)N(3) produced the corresponding cationic imino complexes of the general formula [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(L)(6-n)](2+) [L = PhN=CHCH(3): n = 5 (5); n = 4, cis- (6) and trans- (7); n = 0 (8) and L = HN=CHPh: n = 5 (9); n = 4, cis- (10) and trans- (11)]. These novel complexes were characterized by NMR spectroscopy ((1)H and (31)P) and single-crystal X-ray diffraction. A mechanism involving the migration of one of the groups on the azido α-C atom to the α-N atom of the azido complex, concerted with the photo-expulsion of N(2), was invoked to rationalize the formation of the imino complexes. Density functional theory (DFT) calculations indicated that due to the coordination with and activation by the cluster core, the energy of the electronic transition responsible for the photo-decomposition of a cluster-bound azide is much reduced with respect to its pure organic counterpart. The observed geometric specificity was rationalized by using the calculated and optimized preferred ground-state conformation of the cluster-azido intermediates.  相似文献   

10.
Site-differentiated solvated clusters of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(MeCN)(6)(-)(n)](SbF(6))(2) (n = 4, cis and trans; n = 5) undergo ligand substitution reaction with isonicotinamide to afford the corresponding amide derivatives, [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(isonicotinamide)(6)(-)(n)](2+) [1 (n = 5); 2 (n = 4, trans); 3 (n = 4, cis)]. Retention of stereochemistry in each case was confirmed by (1)H and (31)P NMR. The solid-state structures of all three compounds were established crystallographically, which revealed self-complementary hydrogen-bonding interactions between adjacent cluster units. While complex 1 exists as hydrogen-bonded dimers in the solid state, compounds 2 and 3 form one-dimensional chains of clusters bridged by paired hydrogen bonds. It is the rigid stereochemistry of the cluster, combined with the classic crystal engineering motif of complementary N-H.O amide hydrogen bonding, that affords the predictable solid-state structures and dimensionality.  相似文献   

11.
The two new ligands L(fur) and L(th) consist of two chelating pyrazolyl-pyridine termini connected to furan-2,5-diyl or thiophene-2,5-diyl spacers via methylene groups. Reaction of these with a range of transition metal dications that prefer octahedral coordination affords a series of unusual structures which are all based on a 2M : 3L ratio. [M(8)(L(fur))(12)]X(16) (M = Co, Cu, X = BF(4); and M = Zn, X = ClO(4)) are octanuclear cubes with approximate D(4) symmetry in which two cyclic tetranuclear helicate M(4)L(4) units are connected by four additional 'pillar' ligands. In contrast [Ni(4)(L(fur))(6)](BF(4))(8) is a centrosymmetric molecular square consisting of two dinuclear Ni(2)L(2) units of opposite chirality that are connected by a pair of additional L(fur) ligands such that the four edges of the Ni(4) square are spanned by alternately two and one bridging ligands. [M(4)(L(th))(6)](BF(4))(8) (M = Co, Ni, Cu) are likewise molecular squares with similar structures to [Ni(4)(L(fur))(6)](BF(4))(8) with the significant difference that the two crosslinked double helicate M(2)L(2) units are now homochiral. The Cd(II) complexes both behave quite differently to the first-row metal complexes, with [Cd(L(fur))(BF(4))](BF(4)) being a simple mononuclear complex with a single ligand in which the furan oxygen atom is weakly interacting with the Cd(II) centre. In contrast, in {[Cd(2)(L(th))(3)](BF(4))(4)}(∞), where this quasi-pentadentate coordination mode of the ligand is not possible because thiophene is too poor an electron donor, the ligand reverts to bis-bidentate bridging coordination to afford a one-dimensional chain consisting of an infinite sequence of crosslinked, homochiral, Cd(2)(L(th))(2) double helicate units.  相似文献   

12.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

13.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

14.
The reaction of [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 with an excess of 1,2-bis(4-pyridyl)ethane (L1) and (E)-1,2-bis(4-pyridyl)ethene (L2) produced [Re6(mu3-Se)8(PEt3)5(L1)](SbF6)2 and [Re6(mu3-Se)8(PEt3)5(L2)](SbF6)2, respectively, each bearing an accessible pyridyl N atom capable of further metal coordination. Reacting these cluster complex-based ligands with [Re6(mu3-Se)8(MeCN)6](SbF6)2 afforded two heptacluster metallodendrimers, each featuring a central [Re6(mu3-Se)8]2+ cluster core surrounded by six units of [Re6(mu3-Se)8(PEt3)5]2+ via the bridging interactions of its respective dipyridyl-based ligands. Their identity and stereochemistry have been established, with the most convincing evidence furnished by a unique 77Se NMR spectroscopic study. Electrochemical studies suggest very interesting electronic properties of these novel metallodendrimers.  相似文献   

15.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

16.
The reaction of Et(2)PCH(2)N(Me)CH(2)PEt(2) (PNP) with [Ni(CH(3)CN)(6)](BF(4))(2) results in the formation of [Ni(PNP)(2)](BF(4))(2), which possesses both hydride- and proton-acceptor sites. This complex is an electrocatalyst for the oxidation of hydrogen to protons, and stoichiometric reaction with hydrogen forms [HNi(PNP)(PNHP)](BF(4))(2), in which a hydride ligand is bound to Ni and a proton is bound to a pendant N atom of one PNP ligand. The free energy associated with this reaction has been calculated to be -5 kcal/mol using a thermodynamic cycle. The hydride ligand and the NH proton undergo rapid intramolecular exchange with each other and intermolecular exchange with protons in solution. [HNi(PNP)(PNHP)](BF(4))(2) undergoes reversible deprotonation to form [HNi(PNP)(2)](BF(4)) in acetonitrile solutions (pK(a) = 10.6). A convenient synthetic route to the PF(6)(-) salt of this hydride involves the reaction of PNP with Ni(COD)(2) to form Ni(PNP)(2), followed by protonation with NH(4)PF(6). A pK(a) of value of 22.2 was measured for this hydride. This value, together with the half-wave potentials of [Ni(PNP)(2)](BF(4))(2), was used to calculate homolytic and heterolytic Ni-H bond dissociation free energies of 55 and 66 kcal/mol, respectively, for [HNi(PNP)(2)](PF(6)). Oxidation of [HNi(PNP)(2)](PF(6)) has been studied by cyclic voltammetry, and the results are consistent with a rapid migration of the proton from the Ni atom of the resulting [HNi(PNP)(2)](2+) cation to the N atom to form [Ni(PNP)(PNHP)](2+). Estimates of the pK(a) values of the NiH and NH protons of these two isomers indicate that proton migration from Ni to N should be favorable by 1-2 pK(a) units. Cyclic voltammetry and proton exchange studies of [HNi(depp)(2)](PF(6)) (where depp is Et(2)PCH(2)CH(2)CH(2)PEt(2)) are also presented as control experiments that support the important role of the bridging N atom of the PNP ligand in the proton exchange reactions observed for the various Ni complexes containing the PNP ligand. Similarly, structural studies of [Ni(PNBuP)(2)](BF(4))(2) and [Ni(PNP)(dmpm)](BF(4))(2) (where PNBuP is Et(2)PCH(2)N(Bu)CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) illustrate the importance of tetrahedral distortions about Ni in determining the hydride acceptor ability of Ni(II) complexes.  相似文献   

17.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

18.
Qin L  Yao LY  Yu SY 《Inorganic chemistry》2012,51(4):2443-2453
Fluorescent carbazole-based dipyrazole ligands (H(2)L(1-4)) were employed to coordinate with dipalladium corners ([(phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), [(dmbpy)(2)Pd(2)(NO(3))(2)](NO(3))(2), or [(15-crown-5-phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), where phen = 1,10-phenanthroline and dmbpy = 4,4'-dimethyl-2,2'-bipyridine, in aqueous solution to afford a series of positively charged [M(8)L(4)](8+) or [M(4)L(2)](4+) multimetallomacrocycles with remarkable water solubility. Their structures were characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis and in the cases of 1·8BF(4)(-) ([(phen)(8)Pd(8)L(1)(4)](BF(4))(8)), and 3·4BF(4)(-) ([(phen)(4)Pd(4)L(2)(2)](BF(4))(4)) by single-crystal X-ray diffraction analysis. Complexes 3-8 are square-type hybrid metallomacrocycles, while complexes 1 and 2 exhibit folding cyclic structures. Interestingly, in single-crystal structures of 1·8BF(4)(-) and 3·4BF(4)(-), BF(4)(-) anions are trapped in the dipalladium clips through anion-π interaction. The luminescence properties and interaction toward anions of these metallomacrocycles were discussed.  相似文献   

19.
The first face-capped octahedral clusters with 25 metal-based valence electrons are shown to provide versatile building units capable of engaging in magnetic exchange coupling. Reactions of [Re(5)OsSe(8)Cl(6)](3-) and [Re(4)Os(2)Se(8)Cl(6)](2-) with NaCN in a melt of NaNO(3) or KCF(3)SO(3) afford the 24-electron clusters [Re(5)OsSe(8)(CN)(6)](3-) and [Re(4)Os(2)Se(8)(CN)(6)](2-). The 13C NMR spectrum of a 13C-labeled version of the latter species indicates a 1:2 mixture of cis and trans isomers. Cyclic voltammograms of the clusters in acetonitrile display reversible [Re(5)OsSe(8)(CN)(6)](3-/4-), cis-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-), and trans-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-) couples at E(1/2) = -1.843, -0.760, and -1.031 V vs FeCp(2)(0/+), respectively, in addition to other redox processes. Accordingly, reduction of [Re(5)OsSe(8)(CN)(6)](3-) with sodium amalgam and [Re(4)Os(2)Se(8)(CN)(6)](2-) with cobaltocene produces the 25-electron clusters [Re(5)OsSe(8)(CN)(6)](4-) and [Re(4)Os(2)Se(8)(CN)(6)](3-). EPR spectra of these S = 1/2 species in frozen DMF solutions exhibit isotropic signals with g = 1.46 for the monoosmium cluster and g = 1.74 and 1.09 for the respective cis and trans isomers of the diosmium cluster. In each case, results from DFT calculations show the unpaired spin to delocalize to some extent into the pi* orbitals of the cyanide ligands, suggesting the possibility of magnetic superexchange. Reaction of [Re(5)OsSe(8)(CN)(6)](3-) with [Ni(H(2)O)(6)](2+) in aqueous solution generates the porous Prussian blue analogue Ni(3)[Re(5)OsSe(8)(CN)(6)](2).32H(2)O; however, the tendency of the 25-electron clusters to oxidize in water prohibits their use in reactions of this type. Instead, a series of cyano-bridged assemblies, [Re(6-n)Os(n)Se(8)[CNCu(Me(6)tren)](6)](9+) (n = 0, 1, 2; Me(6)tren = tris(2-(dimethylamino)ethyl)amine), were synthesized to permit comparison of the exchange coupling abilities of clusters with 23-25 electrons. As expected, the results of magnetic susceptibility measurements show no evidence for exchange coupling in the assemblies containing the 23- and 24-electron clusters, but reveal the presence of weak ferromagnetic coupling in [Re(4)Os(2)Se(8)[CNCu(Me(6)tren)](6)](9+). Assuming all cluster-Cu(II) exchange interactions to be equivalent, the data were fit to give an estimated coupling strength of J = 0.4 cm(-1). To our knowledge, the ability of such clusters to participate in magnetic exchange coupling has never previously been demonstrated.  相似文献   

20.
Reaction of 1,3-bis(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [H(pyCH(2))(2)im]BF(4), with silver oxide in dichloromethane readily yields [Ag((pyCH(2))(2)im)(2)]BF(4), 1.BF(4)(). 1.BF(4) is converted to the analogous Au(I)-containing species, [Au((pyCH(2))(2)im)(2)]BF(4), 3, by a simple carbene transfer reaction in dichloromethane. Further treatment with two equivalents of AgBF(4) produces the trimetallic species [AuAg(2)((pyCH(2))(2)im)(2)(NCCH(3))(2)](BF(4))(3), 4, which contains two silver ions each coordinated to the pyridine moieties on one carbene ligand and to an acetonitrile molecule in a T-shaped fashion. Monometallic [Ag((py)(2)im)(2)]BF(4), 5, and [Au((py)(2)im)(2)]BF(4), 6, are made analogously to 1.BF(4) and 3 starting from 1,3-bis(2-pyridyl)-imidazol-2-ylidene tetrafluoroborate, [H(py)(2)im]BF(4). Addition of excess AgBF(4) to 6 yields the helical mixed-metal polymer, ([AuAg((py)(2)im)(2)(NCCH(3))](BF(4))(2))(n), 7 which contains an extended Au(I)-Ag(I) chain with short metal-metal separations of 2.8359(4) and 2.9042(4) A. Colorless, monometallic [Hg((pyCH(2))(2)im)(2)](BF(4))(2), 8, is easily produced by refluxing [H(pyCH(2))(2)im)]BF(4) with Hg(OAc)(2) in acetonitrile. The related quinolyl-substituted imidazole, [H(quinCH(2))(2)im]PF(6), is produced analogously to [H(pyCH(2))(2)im]BF(4). [Hg((quinCH(2))(2)im)(2)](PF(6))(2), 9, is isolated in good yield as a white solid from the reaction of Hg(OAc)(2) and [H(quinCH(2))(2)im]PF(6). The reaction of [H(quinCH(2))(2)im]PF(6) with excess Ag(2)O produces the triangulo-cluster [Ag(3)((quinCH(2))(2)im)(3)](PF(6))(3), 11. All of these complexes were studied by (1)H NMR spectroscopy, and complexes 3-9 were additionally characterized by X-ray crystallography. These complexes are photoluminescent in the solid state and in solution with spectra that closely resemble those of the ligand precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号