首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new europium(III) chelate is synthesized and characterized. The wavelength of sensitization of Eu3+ luminescence is shifted further into visible so that efficient excitation with 425, 435 and 450-nm LEDs becomes possible. Photophysical properties and temperature dependence of luminescence are investigated in toluene solution and various polymer matrixes. The sensor materials are also characterized in terms of cross-sensitivity to oxygen and photostability. The sensor material based on the europium complex immobilized into poly(vinylidene chloride-co-acrylonitrile) shows negligible cross-sensitivity to oxygen and is particularly attractive for applications at physiological conditions. Other materials can be applied for sensing and imaging purposes at room temperatures. The new materials can also be used for compensating optical (oxygen, CO2 etc.) sensors for temperature effects.  相似文献   

2.
Rare-earth (RE) materials have high magnetic moments and form a wide range of magnetic structures. There has been speculation in the literature that rare-earth nitrides may form half-metallic ferromagnetics. This is surprising because, based on a simple ionic model, trivalent rare-earth nitrides would be expected to be insulators with a similar electronic structure to the divalent rare-earth chalcogenides. However if it is the case that they are half-metallic or narrow gap insulators, then they have potential applications in spin-filtering devices. In the present investigation, We have deposited GdN films on glass substrate at room temperature by Ar/N2 mixed gas plasma-radio frequency (rf) sputtering method. The structure and the complex optical properties as well as the energy gap of GdN thin films as a function of N2 partial pressure are determined.  相似文献   

3.
The solid-state electrochemical principle has been a selective and accurate way of sensing chemical components in various environments, including liquid metal, for an extended period of time. Since after Carl Wagner’s interpretation of zirconia, there appeared many advances in chemical sensor applications. The electrochemical techniques for the chemical measurements have, in general, several major advantages compared to other methods. The information of interest is directly converted into electrical signal which may be employed in electronic circuits. Electrochemical measurements are always selective for the quantities that undergo the electrochemical redox reaction. In most cases, reactions at equilibrium are considered, but techniques have also been developed to be able to use kinetic limit. Furthermore, the signal is independent of materials properties, such as the ionic conductivity or impurity as long as it is a predominant ionic conductor. Depending on the type of application, voltage or current measurements are employed. While potentiometric method commonly allows measuring chemical species over a wide range of concentration, amperometric sensors generally cover a quite limited range but have a much higher resolution. In this paper, various principles of electrochemical techniques to measure the chemical quantities are introduced. And there are many examples of the status of researches on electrochemical sensors, such as oxygen sensor, carbon dioxide sensor, NO x sensor, SO x sensor, and hydrogen sensor.  相似文献   

4.
《Current Applied Physics》2018,18(12):1473-1479
Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified BiLaFe2O6 (BLFO) and Mn modified Bi2FeMnO6 (BFMO) were studied as new members of multiferroic BiFeO3 (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.  相似文献   

5.
Tl2E (E=S or Se) nanorods were synthesized via solvothermal route with the addition of KI. The products were characterized with X-ray powder diffraction patterns and transmission electron microscope images. Their optical properties were studied by UV-vis transmittance and photoluminescence spectrum. The band gap of direct forbidden transitions was found larger than that of bulk materials, because of the blue shift caused by nanometer-scale crystalline particles due to quantum confinement effects. A possible growth mechanism is proposed.  相似文献   

6.
To suppress nosocomial infections, numerous studies of quaternary ammonium cations (R4N+) to improve the antibiotic properties have been investigated. However, most of them reported developments of novel organic or polymeric materials with R4N+. To pioneer antibacterial inorganic materials hybridized with R4N+, a colloidal solution of metal oxide nanosheets, which have a small particle size (typically less than 10 nm), is considered to be a suitable option because oxide nanosheets with a negative surface charge strongly interact R4N+. Herein, we demonstrate for the first time that the high antibacterial/bactericidal effects of titanate nanosheets (TNS) adsorbing tetramethylammonium (TMA-TNS) or tetrabultylammonium ions (TBA-TNS). Their antibacterial effects against Enterobacter cloacae were evaluated using a colony forming unit (CFU) counting method. The results showed that the synthesized TNS composites had superior antibacterial and bactericidal effects to those of free R4N+ and TBA-TNS exhibited the strongest effect (69% CFU reduction compared with that of free TBA+ and 98% CFU reduction compared with the control) among the samples examined. Dark incubation was employed to ensure that photocatalytic reaction of semiconducting TNS did not contribute to the process. Compared with TiO2 spherical particles, such high bactericidal effect would be induced by a synergistic function of TBA+ and TNS, which physically damages bacteria due to long hydrophobic alkyl chains and an anisotropic nanocrystalline structure with sharp edges, respectively.  相似文献   

7.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

8.
In this study, the coil-less fluxgate properties of the as-cast and annealed amorphous wires with the composition (Co0.94Fe0.06)72.5Si12.5B15 were investigated. As its name implies, a coil-less fluxgate is a new type of magnetic-field sensor without a coil. When the wire is periodically saturated in a magnetic field in the circumferential direction with a 30 kHz, 62 mA driving current under a 16.5π rad/m torsional strain, there is a linear variation in the second harmonic of the voltage from the wire ends as a function of the applied external DC magnetic field along the length of the wire.Current-stress annealing of each sample improved the sensitivity of the coil-less fluxgate sensor. This is the first time that it has been shown that a linear change in the output of the coil-less fluxgate sensor can be obtained using torsion annealed wire without the necessity of twisting the wire during measurement. We showed that the linear operating range of the sensor can be increased by increasing the demagnetization factor in the sensing direction, so that the coil-less fluxgate sensor can be miniaturised just by reducing the wire length.  相似文献   

9.
The design of core–shell heteronanostructures is powerful tool to control both the gas selectivity and the sensitivity due to their hybrid properties. In this work, the SnO2–ZnO core–shell nanowires (NWs) were fabricated via two-step process comprising the thermal evaporation of the single crystalline SnO2 NWs core and the spray-coating of the grainy polycrystalline ZnO shell for enhanced ethanol sensing performance. The as-obtained products were investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The ethanol gas-sensing properties of pristine SnO2 and ZnO–SnO2 core–shell NW sensors were studied and compared. The gas response to 500 ppm ethanol of the core–shell NW sensor increased to 33.84, which was 12.5-fold higher than that of the pristine SnO2 NW sensor. The selectivity of the core–shell NW sensor also improved. The response to 100 ppm ethanol was about 14.1, whereas the response to 100 ppm liquefied petroleum gas, NH3, H2, and CO was smaller, and ranged from 2.5 to 5.3. This indicates that the core–shell heterostructures have great potential for use as gas sensing materials.  相似文献   

10.
This article deals with the first covalent grafting of an enzyme on twice functionalized γ-Fe2O3@SiO2 core–shell magnetic nanoparticles. First, amino-PEG functionalized nanoparticles were synthesized in order to comply with non-toxic platforms that would be stable in high concentration and would exhibit chemical groups to allow further coupling with biomolecules. This approach produces a colloidal suspension of covalently grafted enzymes that remains stable for months and mimics the enzyme–substrate interactions in solution. Secondly, nanoparticles synthesis and enzyme coupling process were reported and the catalytic properties of bound enzymes were measured and compared with that of the free one. These new materials appear to be useful tools for enzymatic catalysis research and may be extended to other biomolecules. Furthermore, magnetic properties of these materials open the way to separation, purification, and transport under magnetic field.  相似文献   

11.
The feasibility of a stress sensor based on giant magneto-resistance (GMR) on a flexible polyimide substrate is presented. Therefore, a stack system with a GMR effect of up to 8.6%8.6% has been deposited on a polyimide substrate and patterned to micrometer scaled sensor elements. An in-plane tensile stress was applied to the sensor to achieve a rotation of the anisotropy of the magnetostrictive free layer. The magneto-optical and magneto-resistive effect was measured. The stress dependence of the Co50Fe50 free-layer magnetization was measured up to an elongation of 2.5% in a CoFe/Cu/CoFe spin valve. The magneto-optical results are compared to the resistance loops of the sample. Furthermore, the normalized sensor output is shown as a function of the applied stress at several bias fields and at the remanent state.  相似文献   

12.
Schottky and Ohmic contacts are essential parts of electronic and optoelectronic devices based on semiconductor materials. Controlling the contact/semiconductor interface properties is the key to obtaining a contact with an optimum performance. Contacts incorporated by nanomaterials, i.e., nano-sized particles that are embedded at the interface of contact/semiconductor, can transform the conventional approaches of contact fabrication, resulting in more reproducible, tunable and efficient electronic, and optoelectronic devices. This article is a review of theoretical and fabrication progress on the last two decades to produce contacts with embedded nanoparticles (NPs). The review covers common routes of NPs deposition on different substrates (e.g., Si, Ge, SiC, GaN, GaAs67P33, and InP) for nanostructured contact fabrication and the theoretical models to investigate the NPs effects on the conduction mechanism and electrical properties of devices.  相似文献   

13.
本文综述了基于电致发光效应的光学电压传感器机理、分类及其主要特性,分析总结了此类传感器的研究现状及其存在的主要问题,同时提出未来研究课题的建议。电致发光型电压传感器的主要优点在于不需要载波光源,因而可以有效避免以往光学电压器中工作光源性能不稳定所引起的传感器性能变化;此外,此类电压传感器结构简单、体积小、重量轻、成本低,可以实现较高的性能价格比。今后研究的主要问题包括合理选择电压传感材料与器件、提高传感器的温度和湿度稳定性等。电致发光型电压传感器在电力工业和航空航天等领域的科学研究与实验中将具有广泛的应用前景。  相似文献   

14.
陈慧卿  胡明  曾晶  王巍丹 《中国物理 B》2012,21(5):58201-058201
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.  相似文献   

15.
Titanium oxide (TiO2) nanocyrstals which are perfectly dispersed in organic solvents are synthesized by organic-ligand-assisted supercritical hydrothermal synthesis. The addition of hexaldehyde to the supercritical hydrothermal synthesis of TiO2 leads to the in-situ surface modification, which enables the synthsized TiO2 nanocrystals to be perfectly dispersed in iso-octane because of its hydrophobic nature. Further, the one-pot synthesis of hybrid materials results in the significant reduction of the particles size, probably due to the capping effect of hexaldehyde to suppress the particles growth.  相似文献   

16.
Probing pH value is essential for many applications. The request of developing stable and highly sensitive pH sensor with small size are increased recently, this is a challenge to the traditional glass pH sensors. This work investigated the pH sensing performance of the novel two-dimensional electronic gas (2DEG) at the LaAlO3/SrTiO3 heterostructure interface discovered recently. The experimental results demonstrated that the devices host excellent sensing ability to the pH value of aqueous solutions. Quite stable output current is realized for a given pH value, and the output current is linearly dependent on pH value as required by sensor applications. This work would prompt the application research of LaAlO3/SrTiO3 heterostructure and design of new generation of advanced pH sensors.  相似文献   

17.
Fine powder of cubic Y2O3:Eu phosphor was synthesized and simultaneously deposited on fused silica slides by low-temperature flame-assisted spray pyrolysis in premixed propane/air flames. By adding ethylene glycol and citric acid to the precursor solution, morphology of phosphor particles could be improved. The intensity of the photoluminescence (PL)-emission of the phosphor screens deposited by the modified technique, when excited by ultraviolet (UV)-light with the wavelength of 254 nm, did not exceed that of the screens deposited without the polymeric additives. However, in vacuum UV, phosphors produced with the addition of polymers perform significantly better than the ordinary “no-polymer” FASP-coatings.  相似文献   

18.
The magnetite nanoparticles were synthesized in an ethanol–water solution under ultrasonic irradiation from a Fe(OH)2 precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol–water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol–water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol–water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe2+ concentration in the magnetite cubic structure.  相似文献   

19.
Water W  Chen SE  Meen TH  Ji LW 《Ultrasonics》2012,52(6):747-752
A ZnO guiding layer with nanorod arrays grown on a 90°-rotated ST-cut (42°45) quartz substrate was used to fabricate a Love wave fluid sensor. ZnO nanorod arrays synthesized on the guiding layer enhance the sensitivity of the flow rate. ZnO thin films were deposited by radio frequency magnetron sputtering and ZnO nanorod arrays were then synthesized on the thin films via the hydrothermal method. The crystalline structure and surface morphology of ZnO thin films and nanorod arrays were examined by X-ray diffraction and scanning electron microscopy. The effects of the thickness of ZnO thin film and the surface morphology of ZnO nanorod arrays on the sensitivity of flow rate were investigated. A linear response between flow rate and the return loss of the sensor with one-port resonator type can be obtained by adjusting the thickness of ZnO thin film and the length of nanorod arrays.  相似文献   

20.
The radiation sensing field effect transistor (RadFET) with SiO2 gate oxide has been commonly used as a device component or dosimetry system in the radiation applications such as space research, radiotherapy, and high-energy physics experiments. However, alternative gate oxides and more suitable packaging materials are still demanded for these dosimeters. HfO2 is one of the most attractive gate oxide materials that are currently under investigation by many researchers. In this study, Monte Carlo simulations of the average deposited energy in RadFET dosimetry systems with different package lid materials for point electron and photon sources were performed with the aim of evaluating the effects of package lids on the sensitivity of the RadFET by using HfO2 as a gate dielectric material. The RadFET geometry was defined in a PENGEOM package and electron–photon transport was simulated by a PENELOPE code. The relatively higher average deposited energies in the sensitive region (HfO2 layer) for electron energies of 250?keV–20?MeV were obtained from the RadFET with the Al2O3 package lid despite of some deviations from the general tendency. For the photon energies of 20–100?keV, the average amount of energy deposited in RadFET with Al2O3 package was higher compared with the other capped devices. The average deposited energy in the sensitive region was quite close to each other at 200?keV for both capped and uncapped devices. The difference in the average deposited energy of the RadFET with different package lid materials was not high for photon energies of 200–1200?keV. The increase in the average deposited energy in the HfO2 layer of the RadFET with Ta package lid was higher compared with the other device configurations above 3?MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号