首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, highly specific and sensitive isotope-dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) method coupled with an on-line solid-phase extraction (SPE) system was developed to measure N7-methylguanine (N7-MeG) in urine. 15N5-Labeled N7-MeG was synthesized to serve as an internal standard, and an on-line SPE cartridge was used for on-line sample cleanup and enrichment. The urine sample can be directly analyzed within 15 min without prior sample purification. The detection limit for this method was estimated as 8.0 pg/mL (4.8 pmol) on-column. This method was further applied to study exposure to methylating agents arising from cigarette smoke. Sixty-seven volunteers were recruited, including 32 regular smokers and 35 nonsmokers. Urinary cotinine, a major metabolite of nicotine, was also determined using an isotope-dilution LC/MS/MS method. The results showed that urinary levels of N7-MeG observed in smokers (4215 +/- 1739 ng/mg creatinine) were significantly (P < 0.01) higher than those in nonsmokers (3035 +/- 720 ng/mg creatinine). It was further noted that the urinary level of N7-MeG was found to be correlated with that of cotinine for smokers, implying that cigarette smoking resulted in increased DNA methylation, followed by depurination and excretion of N7-MeG in urine. As a result of the on-line extraction system, this method is capable of routine high-throughput analysis and accurate quantitation of N7-MeG, and could be a useful tool for health surveillance of methylating agent exposure.  相似文献   

2.
An isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS/MS) method with an on-line sample clean-up device, for the quantitative analysis of human urine for the benzene exposure biomarker S-phenylmercapturic acid (SPMA), was developed and validated. The sample clean-up system was constructed from an autosampler, a reversed-phase C18 trap cartridge, a two-position switching valve, and controlling computer software and hardware. The sample clean-up system was interfaced via 1/20 splitting to the ESI source of a triple-quadrupole mass spectrometer using negative ion mode and multiple reaction monitoring for SPMA and the isotope-labeled internal standard. A strategy was adopted to acquire pooled blank urine matrix and quality control samples spiked with standards. Validated procedures and data on method specificity, detection limits, standard curves, precision and recovery, sample storage stability, and inter-laboratory comparison are presented. The analytical system was fully automated. No tedious manual sample clean-up procedures are required. With the selectivity and the sensitivity provided by ESI-MS/MS detection, the analytical system can be used for high-throughput and accurate determination of SPMA levels in human urine samples, as a biomarker for environmental as well as occupational benzene exposure.  相似文献   

3.
A gas chromatographic method, along with a headspace solid-phase microextraction (HS-SPME), was developed for the determination of acrylamide formed in Maillard reaction model systems. The developed method was validated by liquid chromatography/mass spectrometry. A headspace sample was collected from an aqueous acrylamide solution (100 microg/mL) by SPME and directly injected into a gas chromatograph equipped with a nitrogen-phosphorus detector. The recovery of acrylamide from an aqueous solution was satisfactory, i.e, >93% under the conditions used. Acrylamide formed in an asparagine/D-glucose (molar ratio, 1/2) Maillard reaction model system heated at 150 and 170 degrees C for 20 min was collected and analyzed by the newly developed method using gas chromatography with nitrogen-phosphorus detection and HS-SPME. The amounts of acrylamide were 318 +/- 33 microg/g asparagine from a sample heated at 150 degrees C and 3329 +/- 176 microg/g asparagine from a sample heated at 170 degrees C. Addition of cysteamine or glutathione to the above model system reduced acrylamide formation. Acrylamide formation was not observed when cysteamine or glutathione was added to asparagine in the above model systems to obtain equimolar concentrations of both compounds. This newly developed method is simple and sensitive, and requires no solvent extraction.  相似文献   

4.
Analysis of urinary N7-(benzo[a]pyren-6-yl)guanine (BP-6-N7Gua), a DNA adduct induced by benzo[a]pyrene, may serve as a risk-associated biomarker for exposure to polyaromatic hydrocarbons (PAHs). In this study a highly sensitive and specific analytical method, incorporating on-line sample preparation coupled with isotope-dilution liquid chromatography and tandem mass spectrometry (LC/MS/MS), was developed to quantitate this adduct in human urine. In order to achieve accurate quantitation, 15N5-labeled BP-6-N7Gua was synthesized to serve as the internal standard, and a two-step solid-phase extraction (SPE) procedure using C8 and SCX cartridges was used for sample cleanup. BP-6-7-N7Gua was analyzed using positive ion LC/MS/MS operated in multiple reaction monitoring (MRM) mode. The [M+H]+ ions at m/z 402 and 407 and the common fragment ion of [M+H]+ at m/z 252 were monitored for quantification. The recovery of this analyte after two-step SPE was 90%, and the limit of detection was 2.5 fmol/mL in 10 mL of urine. This highly specific and sensitive method for BP-6-N7Gua in urine may be applied to assess exposure to PAHs in coke-oven workers for future molecular epidemiology studies on health effects of PAHs.  相似文献   

5.
Acrylamide levels in a variety of food samples were analyzed before and after 3 months of storage at 10 degrees-12 degrees C. The analysis was performed by liquid chromatography tandem mass spectrometry (LC/MS/MS) using deuterium-labeled acrylamide as internal standard. Acrylamide was stable in most matrixes (cookies, cornflakes, crispbread, raw sugar, potato crisps, peanuts) over time. However, slight decreases were determined for dietary biscuits (83-89%) and for licorice confection (82%). For coffee and cacao powder, a significant decrease occurred during storage for 3 or 6 months, respectively. Acrylamide concentrations dropped from 305 to 210 microg/kg in coffee and from 265 to 180 microg/kg in cacao powder. On the contrary, acrylamide remained stable in soluble coffee as well as in coffee substitutes. Reactions of acrylamide with SH group-containing substances were assumed as the cause for acrylamide degradation in coffee and cacao. Spiking experiments with acrylamide revealed that acrylamide concentrations remained stable in baby food, cola, and beer; however, recovery levels dropped in milk powder (71%), sulfurized apricot (53%), and cacao powder (17%). These observations suggest that variations in the acrylamide content of food, especially in coffee and cacao, can vary depending on the storage time because special food constituents and/or reaction products can affect the levels.  相似文献   

6.
We describe a rapid and sensitive high-performance liquid chromatography/electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) method for simultaneous determination of the most relevant metabolites of benzene and toluene, t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA), and S-benzylmercapturic acid (S-BMA). Urine samples were purified before analysis by solid-phase microextraction (SPE) on SAX cartridges with 50 mg sorbent mass. The developed method fulfils all the standard requirements of precision and accuracy. Calibration curves were linear within the concentration range of the standards (0-80 microg/L(urine) for t,t-MA, and 0-25 microg/L(urine) for S-PMA and S-BMA), and had correlation coefficients > or =0.997. Limits of detection were 6.0 microg/L for t,t-MA, 0.3 microg/L for S-PMA, and 0.4 microg/L for S-BMA. The method was used to determine t,t-MA, S-PMA and S-BMA levels in urine of 31 gasoline-station workers, with personal monitoring data obtained from radial symmetry passive diffusive samplers. In the context of mean work-shift exposures of 75.9 microg/m(3) (range 9.4-220.2) for benzene and 331.9 microg/m(3) (78.2-932.1) for toluene, metabolite concentrations in end-of-shift urine samples ranged from 23.5-275.3 microg/g(creatinine) for t,t-MA, non-detectable to 0.9 microg/g(creatinine) for S-PMA, and 3.8-74.8 microg/g(creatinine) for S-BMA. No significant correlation was found between the environmental concentrations and urinary metabolites (p > 0.05 for all cases); the ratios of benzene metabolites could be influenced by exposure levels and co-exposure to xylenes and toluene. The high throughput of this procedure should facilitate exploration of the metabolic effects of benzene-related co-exposure to toluene and alkylbenzenes in large populations of subjects exposed to gasoline.  相似文献   

7.
A sensitive, high performance liquid chromatography/tandem mass spectrometric (i.e. mass spectrometry/mass spectrometry; LC/MS/MS) method with on-line extraction and sample clean-up for the screening and confirmation of residues of sulfonamides in kidney is described. The sulfonamides are extracted from homogenized kidney with methanol. After centrifugation of the extract, an aliquot of the extract is directly injected on the LC/MS/MS system with further extraction and clean-up of the sample on-line. Detection of the analytes was achieved by positive electrospray ionization (ESI) followed by multiple reaction monitoring. For each sulfonamide the collisional decomposition of the protonated molecule to a common, abundant fragment ion was monitored. The method has been validated for sulfadimethoxine, sulfaquinoxaline, sulfamethazine, sulfamerazine, sulfathiazole, sulfamethoxazole, sulfadiazine and sulfapyridine. Calibration curves resulting from spiked blank kidney samples at the 10-200 microg/kg level showed good linear correlation. At the level of 50, 100 and 200 microg/kg both within- and between-day precision, as measured by relative standard deviation (RSD), were less than 16%. The limits of detection (LODs) ranged from 5 to 13.5 microg/kg. The recoveries ranged from 78 to 82%. The procedure provides a rapid, reliable and sensitive method for the determination of residues of sulfonamides in bovine kidney. The advantage of this method over existing methods is its decreased sample preparation and analysis time, which makes the method more suitable for routine analysis.  相似文献   

8.
8-Hydroxy-2'-deoxyguanosine (8OHdG), one of the major oxidative DNA lesions induced by radical agents, is commonly used as a biomarker for oxidative stress, nowadays preferably in urine. In the absence of a commercially available internal standard a micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (micro-HPLC/ESI-MS/MS) method, suitable for routine analysis of 8OHdG in human urine using external calibration, was developed. Evaluation of the matrix effect showed that the method allows highly sensitive and accurate quantitation despite the absence of an internal standard. HPLC analysis was performed using gradient elution at a flow rate of 10 microL min(-1) using a capillary reversed-phase column and an injection volume of 0.5 microL, with detection of 8OHdG in positive multiple reaction monitoring (MRM) mode. The absolute limit of detection was 0.35 fmol using m/z 168 as a quantifier (fragment) ion. A linear (R2> 0.999) calibration curve in urine was obtained over a range 0.2-10 ng mL(-1). This method is about 20 times more sensitive than previously described procedures, and is characterized by high accuracy (mean 90%) and good reproducibility (RSD <10%). The optimized method was applied to determination of 8OHdG in 18 urinary samples derived from three healthy volunteers. 8OHdG urinary excretion ranged from 3.0-7.9 microg/day, and a large intra-individual variation was found. This method, which effectively circumvents the need for isotopically labeled 8OHdG (internal standard), is suitable for routine monitoring of exposure to DNA-damaging factors in a large number of subjects.  相似文献   

9.
A rapid, sensitive and selective method based on LC-MS/MS has been developed for the direct determination of acrylamide residues in water in compliance with the current European Union (EU) 98/83 Drinking Water Directive. Given the high polarity of acrylamide, the application of a rapid on-line solid phase extraction step, commonly used for preconcentrating low analyte levels, was not found to be completely satisfactory. Therefore, an alternative approach based on the use of direct large-volume injection into the LC-MS/MS system has been used. Three atmospheric-pressure interfaces (ESI, APCI and Ion Sabre APCI) were checked to reach the required sensitivity (0.1 microg/l). All three interfaces were tested by analysis of six different water samples (surface water, groundwater, drinking water and three treated water samples) spiked at three concentration levels each (0.1, 1 and 10 microg/l). When using ESI, poor sensitivity and high matrix effects were observed. This situation improved when APCI was used as the interface because no matrix effect was found, although sensitivity was not completely satisfactory. The best results were obtained by interfacing the Ion Sabre APCI; its higher sensitivity for acrylamide (LOD 0.03 microg/l) and the absence of matrix effects recommended its selection. Using this approach, satisfactory recoveries (90-97%) and precision (<12%) were obtained for all water samples studied. Besides, the acquisition of two different MS/MS transitions allowed not only the quantification but also the confirmation of acrylamide in water at concentration levels around 0.1 microg/l.  相似文献   

10.
An electrospray ionization tandem mass spectrometry (ESI-MS/MS) system with an online dual-loop cleanup device was developed for simultaneous quantitation of the urinary benzene exposure biomarkers trans,trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA). The cleanup device was constructed from an autosampler, two electrically operated two-position switching valves, a reversed-phase C18 trap cartridge, a 200-microL loop, and two solvent-delivery pumps. The device was interfaced directly with a triple-quadrupole mass spectrometer and fully controlled by computer software and hardware. Because isotope dilution by introducing 13C-labeled ttMA and SPMA as internal standards was employed, the precision of the analytical system was high (for ttMA, intra- and inter-day CV values ranged from 3.82-4.53%; for SPMA, 2.13-7.06%). The calibration curves obtained using human urine spiked with ttMA were linear from 15.6-4000 microg/L (R = 0.9998) and SPMA at concentrations from 0.78-200 microg/L (R = 0.9993). The method detection limit (MDL) for SPMA was 0.23 microg/L. The MDL of ttMA could not be determined accurately because of unavailability of an appropriate blank urine matrix, but was estimated to be lower than 7.43 microg/L. Without tedious manual sample cleanup procedures the analytical system is fully automated and is therefore useful for high-throughput simultaneous determination of urinary ttMA and SPMA. The sample throughput is roughly 100 samples per day. With the selectivity and the sensitivity provided by MS/MS detection, the analytical system can be used for large-scale monitoring of environmental or occupational exposure of humans to benzene.  相似文献   

11.
Gas chromatography coupled with electron capture detector (GC-ECD) was successfully developed and applied for the rapid determination of acrylamide in conventional fried foods, such as potato crisps, potato chips, and fried chicken wings. The method included defatting with n-hexane, extraction with aqueous solution of sodium chloride (NaCl), derivatization with potassium bromate (KBrO3) and potassium bromide (KBr), and liquid-liquid extraction with ethyl acetate. The final acrylamide extract was analyzed by GC-ECD for quantification and by GC-MS for confirmation. The chromatographic analysis was performed on the HP-INNOWax capillary column, and good retention and peak response of acrylamide were achieved under the optimal conditions (numbers of theoretical plates N = 83,815). The limit of detection (LOD) was estimated to be 0.1 microg kg(-1) on the basis of ECD technique. Recoveries of acrylamide from conventional samples spiked at levels of 150, 500 and 1000 microg kg(-1) (n = 4 for each level) ranged between 87 and 97% with relative standard deviations (RSD) of less than 4%. Furthermore, the GC-ECD method showed that no clean-up steps of acrylamide derivative would be performed prior to injection and was slightly more sensitive than the MS/MS-based methods. Validation and quantification results demonstrated that this method should be regarded as a new, low-cost, and robust alternative for conventional investigation of acrylamide.  相似文献   

12.
Anabolic androgenic steroids (AAS) are metabolized extensively in the human body, resulting mainly in the formation of glucuronide conjugates. Current detection methods for AAS are based on gas chromatographic/mass spectrometric (GC/MS) analysis of the hydrolyzed steroid aglycones. These analyses require laborious sample preparation steps and are therefore time consuming. Our interest was to develop a rapid and straightforward method for intact steroid glucuronides in biological samples, using liquid-phase microextraction (LPME) sample clean-up and concentration method combined with liquid chromatographic/tandem mass spectrometric (LC/MS/MS) analysis. The applicability of LPME was optimized for 13 steroid glucuronides, and compared with conventional liquid-liquid extraction (LLE) and solid-phase extraction (SPE) procedures. An LC/MS/MS method was developed for the quantitative detection of AAS glucuronides, using a deuterium-labeled steroid glucuronide as the internal standard. LPME, owing to its high specificity, was shown to be better suited than conventional LLE and SPE for the clean-up of urinary AAS glucuronides. The LPME/LC/MS/MS method was fast and reliable, offering acceptable reproducibility and linearity with detection limits in the range 2-20 ng ml(-1) for most of the selected AAS glucuronides. The method was successfully applied to in vitro metabolic studies, and also tested with an authentic forensic urine sample. For a urine matrix the method still has some unsolved problems with specificity, which should be overcome before the method can be reliably used for doping analysis, but still offering additional and complementary data for current GC/MS analyses.  相似文献   

13.
A high-performance liquid chromatography/single quadrupole mass spectrometry (LC/MS) method is described for the determination of urinary S-phenylmercapturic acid (S-PMA), a specific metabolite of benzene. Urine samples were spiked with [13C6]S-PMA (used as the internal standard) and acidified; then they were purified by solid-phase extraction (SPE) on C18 cartridges. Analyses were conducted on a reversed-phase column by gradient runs with 1% aqueous acetic acid/methanol mixtures at different proportions as the mobile phase. The detector was used in electrospray negative ion mode (ESI-), the ions m/z 238 for S-PMA and 244 for [13C6]S-PMA being recorded simultaneously. The detection limit (for a signal-to-noise ratio = 3) was 0.2 microg/L, thus allowing for the measurement of background excretion of S-PMA in the general population. The use of the internal standard allowed us to obtain good precision (CV% values < 3%) and a linear calibration curve within the range of interest for monitoring occupational exposure to benzene (up to 500 microg/L). The method was applied to assay the metabolite concentration in a group of 299 workers (68 smokers and 231 non-smokers) occupationally exposed to relatively low levels of benzene (environmental concentration = 0.4-220 microg/m3, mean 11.4 microg/m3 and 236 non-exposed subjects (134 smokers and 102 non-smokers). The results clearly showed that smoking must be taken into account for the correct interpretation of the results of S-PMA measurements for the assessment of work-related benzene exposure. When only non-smokers were selected, the mean excretion of S-PMA was significantly higher in workers exposed to benzene (1.2 +/- 0.9 microg/g creatinine) than in the control group (0.7 +/- 0.6 microg/g creatinine) (p < 0.001), thus confirming the role of S-PMA as a biomarker of benzene on a group basis, even for relatively low exposure degrees.  相似文献   

14.
The fungicides vinclozolin and iprodione are widely used in agriculture. These pesticides are dicarboximide fungicides containing the common moiety 3,5-dichloroaniline (3,5-DCA). It has been suggested that low-level exposures to such compounds may be associated with adverse health effects such as endocrine disruption. In this study a method using liquid chromatography/triple quadrupole mass spectrometry (LC/MS/MS) was developed for the analysis of 3,5-DCA as a biomarker of exposure to these fungicides in human urine. The urine samples were treated by basic hydrolysis to degrade the fungicides, their metabolites and conjugates to 3,5-DCA. The 3,5-DCA was then extracted using toluene and derivatized using pentafluoropropionic anhydride (PFPA). Analysis of the derivative was carried out using selected reaction monitoring (SRM) in the negative ion mode. Quantification of the derivative was performed using [(13)C(6)]-labeled 3,4-DCA as an internal standard with good precision and linearity in the range 0.1-200 ng/mL urine. The limit of detection was determined to be 0.1 ng/mL. The metabolites in urine were found to be stable during storage at -20 degrees C. To validate 3,5-DCA as a biomarker the method was applied in a human experimental exposure to iprodione and vinclozolin. Two healthy volunteers received 200 microg single oral doses of each pesticide followed by urine sampling during 72-120 h post-exposure. Between 78-107% of the dose was recovered as 3,5-DCA in the urine after exposure.  相似文献   

15.
Mercapturic acid metabolites from dietary acrylamide are important short-term exposure biomarkers for evaluating the in vivo toxicity of acrylamide. Most of studies have focused on the measurement of two metabolites, N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA). Thus, the comprehensive profile of acrylamide urinary metabolites cannot be fully understood. We developed an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of all four mercapturic acid adducts of acrylamide and its primary metabolite glycidamide under the electroscopy ionization negative (ESI-) mode in the present study. The limit of detection (LOD) and limit of quantification (LOQ) of the analytes ranged 0.1–0.3 ng/mL and 0.4–1.0 ng/mL, respectively. The recovery rates with low, intermediate and high spiking levels were calculated as 95.5%–105.4%, 98.2%–114.0% and 92.2%–108.9%, respectively. Acceptable within-laboratory reproducibility (RSD < 7.0%) substantially supported the use of current method for robust analysis. Rapid pretreatment procedures and short run time (8 min per sample) ensured good efficiency of metabolism profiling, indicating a wide application for investigating short-term internal exposure of dietary acrylamide. Our proposed UHPLC-MS/MS method was successfully applied to the toxicokinetic study of acrylamide in rats. Meanwhile, results of human urine analysis indicated that the levels of N-acetyl-S-(2-carbamoylethyl)-l-cysteine-sulfoxide (AAMA-sul), which did not appear in the mercapturic acid metabolites in rodents, were more than the sum of GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine (iso-GAMA). Thus, AAMA-sul may alternatively become a specific biomarker for investigating the acrylamide exposure in humans. Current proposed method provides a substantial methodology support for comprehensive profiling of toxicokinetics and daily internal exposure evaluations of acrylamide in vivo.  相似文献   

16.
A direct ultra-performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) for simultaneous measurement of urinary 5-hydroxytryptophol glucuronide (GTOL) and 5-hydroxyindoleacetic acid (5-HIAA) was developed. The GTOL/5-HIAA ratio is used as an alcohol biomarker with clinical and forensic applications. The method involved dilution of the urine sample with deuterated analogues (internal standards), reversed-phase chromatography with gradient elution, electrospray ionisation and monitoring of two product ions per analyte in selected reaction monitoring mode. The measuring ranges were 6.7-10 000 nmol/l for GTOL and 0.07-100 micromol/l for 5-HIAA. The intra- and inter-assay imprecision, expressed as the coefficient of variation, was below 7%. Influence from ion suppression was noted for both compounds but was compensated for by the use of co-eluting internal standards. The accuracy in analytical recovery of added substance to urine samples was 96 and 98%, respectively, for GTOL and 5-HIAA. Method comparison with GC-MS for GTOL in 25 authentic patient samples confirmed the accuracy of the method with a median ratio between methods (GC-MS to UPLC-MS/MS) of 1.14 (r(2) = 0.975). The difference is explained by the fact that the GC-MS method also measures unconjugated 5-hydroxytryptophol naturally present in urine. The comparison with data for 5-HIAA obtained by an HPLC method demonstrated a median ratio of 1.05 between the methods. The UPLC-MS/MS method was capable of measuring endogenous GTOL and 5-HIAA levels in urine, which agreed with the literature data. In conclusion, a fully validated and robust direct method for the routine measurement of urinary GTOL and 5-HIAA was developed.  相似文献   

17.
该研究基于暴露生物标记物溯源思路,应用于解决芥子气(SM)临床早期诊断、溯源确证难题。建立了芥子气中毒患者尿液中7种游离代谢产物的两步固相萃取/超高效液相色谱-串联质谱(SPE/UPLC-MS/MS)同时定量方法,检出限为5 pg/mL~1 ng/mL,定量下限为10pg/mL~5 ng/mL;结合前期建立的4种游离碱基加合物的同位素稀释-UPLC-MS/MS定量方法,对1例疑似芥子气中毒人员尿液中可能赋存的生物标记物进行了全筛查分析。尿液中共检出3类10种生物标记物,包括首次报道的游离代谢产物芥子亚砜,可确证患者为芥子气中毒;除硫二甘醇外,标记物含量均在暴露后3~4 d达到峰值,随后降低,至7 d仍可检出,其中谷胱甘肽加合物的β裂解产物含量相对较高,可作为芥子气中毒早期诊断与疗效评估的重要指标。  相似文献   

18.
A new, automatic method for the clean-up, preconcentration, separation, and quantitation of nonsteroidal anti-inflammatory drugs (NSAIDs) in biological samples (human urine and serum) using solid-phase extraction coupled on-line to capillary electrophoresis is proposed. Automatic pretreatment is carried out by using a continuous flow system operating simultaneously with the capillary electrophoresis equipment, to which it is linked via a laboratory-made mechanical arm. This integrated system is controlled by an electronic interface governed via a program developed in GWBasic. Capillary electrophoresis is conducted by using a separation buffer consisting of 20 mM NaHPO4, 20 mM beta-cyclodextrin and 50 mM SDS at pH 9.0, an applied potential of 20 kV and a temperature of 20 degrees C. The analysis time is 10 min and the detection limits were between 0.88 and 1.71 microg mL(-1). Automatic clean-up and preconcentration is accomplished by using a C-18 minicolumn and 75% methanol as eluent. The limit of detection of NSAIDs can be up to 400-fold improved when using sample clean-up. The extraction efficiency for these compounds is between 71.1 and 109.7 microg mL(-1) (RSD 2.0-7.7%) for urine samples and from 77.2 to 107.1 microg mL(-1) (RSD 3.5-7.1%) for serum samples.  相似文献   

19.
Soxhlet extraction of acrylamide from potato chips   总被引:6,自引:0,他引:6  
Pedersen JR  Olsson JO 《The Analyst》2003,128(4):332-334
The problem of complete extraction of acrylamide from potato chips was investigated. A method was developed based on the Soxhlet extraction technique. A defatted sample was extracted continuously with methanol, for 10 days, in a Soxhlet extractor. After about 7 days, a constant concentration of acrylamide was reached. This indicates that all the acrylamide that could be removed from the sample had been extracted. Acrylamide was identified in the extract using GC-MS and scan mode. Total concentration was 14500 microg kg(-1) using GC-FID and standard additions. Complementary determinations, using an external standard (GC-FID and GC-MS) and an internal standard (GC-FID), showed results within +/- 5%. A previously published study, using a static extraction method and GC-MS and LC-MS-MS, showed concentrations of 2287 and 1993 microg kg(-1), respectively. The results are discussed in relation to a recent model and analogous experiments. The extracted amount of acrylamide is affected by several parameters: solvent properties, solvent volume, extraction time, temperature, particle size, and the microstructure of the sample.  相似文献   

20.
A sensitive and specific electrospray tandem mass spectrometry method using a column switching unit with two trap columns was established to quantify the mercapturates (MAs) of acrylamide (AA) and glycidamide (GA) in human urine. A specially endcapped material was applied for trapping the hydrophilic MAs and a pre-trap column was used to remove lipophilic compounds from the directly injected urine to protect the trap column. The limits of quantitation for AA-MA and GA-MA in urine were 0.5 microg/L and 1 microg/L, respectively. Urine was spiked with deuterated internal standards and injected directly into LC-MS/MS. Urine of smokers (n=13) revealed the highest concentrations of AA-MA and GA-MA in the range of 61-706 microg/L and 5-54 microg/L, respectively. Lower levels for AA-MA (14-102 microg/L) and GA-MA (1-11 microg/L) were detected in non-smokers (n=13).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号