首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

2.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

3.
Inhaltsübersicht. Die Verbindungen K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2 und Cs2MnTe2 wurden durch Umsetzungen von Alkalimetall-carbonaten mit Mangan bzw. Mangantellurid in einem mit Chalkogen beladenen Wasserstoffstrom erhalten. Kristallstrukturuntersuchungen an Einkristallen ergaben, daß alle neun Verbindungen isotyp kristallisieren (K2ZnO2-Typ, Raumgruppe Ibam). Untersuchungen zum magnetischen Verhalten zeigen antiferromagnetische Kopplungen der Manganionen in den [MnX4/22–]-Ketten, On Alkali Metal Manganese Chalcogenides A2MnX2 with A K, Rb, or Cs and X S, Se, or Te The compounds K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2, and Cs2MnTe2 were synthesized by the reaction of alkali metal carbonates with Mn or MnTe in a stream of hydrogen charged with chalcogen. Structural investigations on single crystals show that all nine compounds crystallize in isotypic atomic arrangements (K2ZnO2 type, space group Ibam). The magnetic behaviour indicates antiferromagnetic interactions of the manganese ions within the [MnX1/22–] chains.  相似文献   

4.
Organotin derivatives of dimethyldithioarsinic (dithocacodylic) acid have been obtained from the appropriate organotin chloride and the sodium salt of the latter. Tin(IV) chloride and NaS2AsMe2 · 2 H2O yielded only two products, namely Cl2Sn(S2AsMe2)2 and Sn (S2AsMe2)4, regardless of the reagent ratio. Spectroscopic characterization of the compounds (infrared and1H NMR) provides structural information suggesting that the dimethyldithioarsinato group behaves as monodentate (or anisobidentate) ligand in Me2Sn(S2AsMe2)2, Bu2Sn-(S2AsMe2)2 and Cy3Sn(S2AsMe2), as bidentate in Ph2Sn(S2AsMe2)2, Ph3Sn(S2AsMe2) and Cl2As(S2AsMe2)2, whereas Sn(S2AsMe2)4 contains both mono- and bidentate ligands, presumably in a six-coordinate structure.  相似文献   

5.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

6.
Formation of Organosilicon Compounds. 98. Reaction of Silylated Phosphorus Ylides with PCl3 The reaction of Si-substituted phosphorus ylides as Me2Si(CH2? SiMe2)2C?PMe3Br 1 , Cl2Si(CH2? SiCl2)2C?PMe2Cl 2 , and (Cl3Si)2C?PMe2Cl 3 with PCl3 yields (Cl2P)2C?PMe2Cl 5 by chlorinating cleavage of the Si-ylid-C bond. Besides 5 also (ClMe2SiCH2)2SiMe2, (Cl3SiCH2)2SiCl2, resp. SiCl4 result from the reaction of 1, 2 and 3 with PCl3. (Cl2P)2C?PMe2Cl forms colourless crystals, mp. 84°C.  相似文献   

7.
Ten organotin derivatives with dithiocarbamates of the formulae (4‐NCC6H4CH2)2Sn(S2CNEt2)2 (1), (4‐NCC6H4CH2)2Sn(S2CNBz2)2 (2), (4‐NCC6H4CH2)2Sn[S2CN(CH2CH2)2NCH3]2 (3), (2‐ClC6H4CH2)2 Sn(S2CNEt2)2 (4), (2‐ClC6H4CH2)2Sn(S2CNBz2)2 (5), (4‐NCC6H4CH2)2Sn(Cl)S2CNEt2 (6), (4‐NCC6H4CH2)2Sn(Cl)S2CNBz2 (7), (4‐NCC6H4CH2)2Sn(Cl)S2CN(CH2CH2)2NCH3 (8), (2‐ClC6H4CH2)2 Sn(Cl)S2CNEt2 (9) and (2‐ClC6H4CH2)2Sn(Cl)S2CNBz2 (10) have been prepared. All complexes were characterized by elemental analyses, IR and NMR. The crystal structures of complexes 1 and 10 were determined by X‐ray single crystal diffraction. For complex 1, the central tin atom exists in a skew‐trapezoidal planar geometry defined by two asymmetrically coordinated dithiocarbamate ligands and two 4‐cyanobenzyl groups. In addition, because of the presence of close intermolecular non‐bonded contacts, complex 1 is a weakly‐bridged dimer. In complex 10, the central tin atom is rendered pentacoordinated in a distorted trigonal bipyramidal configuration by coordinating with S atoms derived from the dithiocarbamate ligand. In vitro assays for cytotoxicity against five human tumor cell lines (MCF‐7, EVSA‐T, WiDr, IGROV and M226) furnished the significant toxicities of the title complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
On LaCo2P2 and Other New Compounds with ThCr2Si2- and CaBe2Ge2-Type Structure The compounds MCo2P2 (M = La, Ce, Pr, Nd, Sm, Th, U), MFe2P2 (M = La, Ce, U), and ThCo2As2 were prepared for the first time. Structure determinations from single crystal X-ray data of LaCo2P2 (R = 0.011; 325 F-values), CeCo2P2 (R = 0.023; 160 F), PrCo2P2 (R = 0.044; 441 F), LaFe2P2 (R = 0.024; 511 F), and CeFe2P2 (R = 0.016; 183 F) with 11 variable parameters each resulted in atomic positions within the range of the ThCr2Si2-type. The powder patterns of ThCo2P2, and ThCo2As2 show superstructure reflections indicating a CaBe2Ge2-type structure. The other compounds can be assigned to the ThCr2Si2-type. Chemical bonding of these can be rationalized by a simple band structure model where bonding transition metal – transition metal interactions are important.  相似文献   

9.
Alternative Ligands. XXIII Rhodium(I) Complexes with Donor/Acceptor Ligands of the Type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) Donor/acceptor ligands of the type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) react with [Rh(CO)2Cl]2 (1) to give the mononuclear complexes RhCl(CO)(Me2PCH2CH2)2SiX2 [X = F( 4 ), Cl ( 5 )] and RhCl(CO)[2-Me2PC6H4)SixMe2]2 [X = F ( 8 ), Cl ( 9 )], respectively. In case of the ligands (Me2PCH2CH2)2SiCl2 ( 3 ) and (2-Me2PC6H6)SiClMe2 ( 7 ) the Rh(I) complexes formed in the first step partly undergo oxidative addition reactions of SiCl bonds yielding rhodium(III) compounds of low solubility. Only for 8 the coordination shifts Δδ = δ(complex)?δ(ligand) and coupling constants give some indication to possible Rh→Si interactions. However, the molecular structure of 8 determined by X-ray diffraction does not show RhSi or RhF bonding contacts. The new compounds were characterized by analytical (C, H) and spectroscopic investigations (MS, IR,-NMR).  相似文献   

10.
Decomposition of dichlorodifluoromethane (CCl2F2 or CFC-12) in aradiofrequency (RF) plasma system is demonstrated. The CCl2F2decomposition fractions CCl 2 F 2 and mole fractionsof detected products in the effluent gas stream of CCl2F2/O2/Ar andCCl2F2/H2/Ar plasma, respectively, have been determined. The experimentalparameters including input power wattage, O2/CCl2F2 or H2/CCl2F2 ratio,operational pressure, and CCl2F2 feeding concentration wereinvestigated. The main carbonaceous product in the CCl2F2/O2/Arplasma system was CO2, while that in the CCl2F2/H2/Ar plasma systemwas CH4 and C2H2. Furthermore, the possible reaction pathways werebuilt-up and elucidated in this study. The results of the experimentsshowed that the highly electronegative chlorine and fluorine wouldeasily separate from the CCl2F2 molecule and combine with the addedreaction gas. This led to the reactions terminated with the CO2,CH4, and C2H2 formation, because of their high bonding strength. Theaddition of hydrogen would form a preferential pathway for the HCland HF formations, which were thermodynamically stable diatomicspecies that would limit the production of CCl3F, CClF3, CF4, andCCl4. In addition, the HCl and HF could be removed by neutral orscrubber method. Hence, a hydrogen-based RF plasma system provideda better alternative to decompose CCl2F2.  相似文献   

11.
Investigation of Cocrystallization in the Systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O, Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C The three-component systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O and Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C were investigated by physio-chemical analysis. There is an interruption in the series of mixed crystals formed in the three-component systems. The inclusion of Co2+- and Ni2+ in Mn(OOCCH3)2 · 2 H2O of Mn2+ in Co(OOCCH3)2 · 2 H2O, Zn(OOCCH3)2 · 2 H2O and Ni(OOCCH3)2 · 4 H2O is based on isodimorphic substitution. It was found that in the system Mn(OOCCH3)2-Zn(OOCCH3)2-H2O crystallizes Zn(OOCCH3)2 · Mn(OOCCH3)2 · 2 H2O. It was identified by the X-ray and differential thermal analysis.  相似文献   

12.
The mass spectra of the following acetylenic derivatives of iron, ruthenium and osmium carbonyls are reported: the iron compounds Fe2(CO)6[C2(C6H5)s2]2, Fe2(CO)6[C2(CH3)2]2 and Fe2(CO)6[C2(C2H5)2]2, the ruthenium compounds Ru2(CO)6[C2(C6H5)2]2, and Ru2(CO)6[C2(CH3)2]2 and the osmium compounds Os2(CO)6[C2(C6H5)2]2, Os2(CO)6[C2HC6H5]2 and Os2(CO)6[C2(CH3)2]2. Iron compounds exhibit breakdown schemes where binuclear, mononuclear and hydrocarbon ions are present. On the other hand, ruthenium and osmium compounds fragment in a similar way and give rise to singly and doubly charged binuclear ions. Phenylic derivatives of ruthenium and osmium also give weak triply charged ions. The results are discussed in terms of relative strengths of the metal-metal and metal-carbon bonds.  相似文献   

13.
Alternative Ligands. XXXV. Syntheses of Bidentate P‐Donor/Sn‐Acceptor Ligands: Coordination Experiments with Cp*Rh(CO)2 and CpRh(C2H4)2 Donor/acceptor ligands Me2Sn(CH2CH2PMe2)2 ( 1 ) and Me2Sn(OCH2PMe2)2 ( 2 ) have been prepared by radical reaction of Me2PVi with Me2SnH2 and by substitution of chlorine in Me2SnCl2 or of ethoxy groups in Me2Sn(OEt)2 by MOCH2PMe2 (M = Li, Na) and HOCH2PMe2, respectively. 2 cannot be isolated in pure form from the product mixture because, due to condensation reactions, the “ladder structure” [Me2Sn(OCH2PMe2)2OSnMe2]2 ( 3 ) is formed. The molecular structure of 3 was determined by X‐ray diffraction studies of single crystals. Attempts to produce the thiophosphoryl derivative of 3 result in the degradation of the ladder structure giving the thermally labile phosphane sulfide Me2Sn(OCH2P(S)Me2)2. Ligands 1 and 2 besides Me2PCH2CH2SnMe3 ( 4 ) have been used for the preparation of rhodium(I) complexes from Cp*Rh(CO)2 ( 5 ) or CpRh(C2H4)2 ( 10 ) as educts. The thermal reaction of 5 with 4 yields Cp*Rh(CO)PMe2CH2CH2SnMe3 ( 6 ), that of 5 with 1 a mixture of the mononuclear derivative Cp*Rh(CO) · PMe2CH2CH2SnMe2CH2CH2PMe2 ( 7 ) and the binuclear complex [Cp*Rh(CO)PMe2CH2CH2]2SnMe2 ( 8 ). The related system [Cp*Rh(CO)PMe2CH2O]2SnMe2 produced by reaction of 5 with 2 can only be detected in solution but, because of some side‐products, was not fully characterized. From 10 and 4 a mixture of mono‐ and disubstituted products, CpRh(C2H4)PMe2CH2CH2SnMe3 ( 11 ) and CpRh(PMe2CH2CH2SnMe3)2 ( 12 ), is obtained. Reaction of 1 with 10 yields a mixture of the complexes CpRh(C2H4)PMe2CH2CH2SnMe2CH2CH2PMe2 ( 13 ) and CpRh(Me2CH2CH2)2SnMe2 ( 14 ). Some of the NMR data (13C, δδSn) of 14 can be interpreted in terms of the expected Rh → Sn interaction. A definite proof by X‐ray diffraction on single crystals, so far, was not possible.  相似文献   

14.
The tellurenyl fluoride, 2‐Me2NCH2C6H4TeF, was obtained from reaction of the tellurenyl iodide RTeI with AgF. The compound was unambiguously identified by 19F and 125Te NMR spectroscopy. The decomposition under disproportionation leads to the tellurium(IV) trifluoride, 2‐Me2NCH2C6H4TeF3 and the ditelluride RTeTeR. The fluorination of the ditelluride, (2‐Me2NCH2C6H4Te)2, with XeF2 results in pure RTeF3. The molecular structure of 2‐Me2NCH2C6H4TeF3, the second structural characterized tellurium(IV) trifluoride, has been determined. Furthermore the syntheses of the new tellurium(IV) difluoride, (2‐Me2NCH2C6H4)2TeF2, and corresponding tellurium(IV) diazide, (2‐Me2NCH2C6H4)2Te(N3)2 as well as the tellurium(IV) triazide, 2‐Me2NCH2C6H4Te(N3)3, and their characterization by spectroscopic methods were reported. During these investigations a rather interesting tellurium(VI) species was formed and the molecular structure of a subsequent product, [(2‐Me2NHCH2C6H4)2TeF3O]2(SiF6), was elucidated. Theoretical investigations for the compounds containing the stabilizing 2‐dimethylaminomethylphenyl substituent are illustrated.  相似文献   

15.
3-Dimethylarsino-propylamine, (CH3)2As? (CH2)3? NH2, and Bis-[3-aminopropyl]-methylarsane, CH3As[(CH2)3? NH2]2 The reduction of the nitriles Me2As(CH2)2? CN (Me?CH3) and MeAs(CH2CH2? CN)2 results in the formation of the arsines Me2As(CH2)3? NH2 and MeAs[(CH2)3? NH2]2, respectively. The reactivity of these compounds, especially the formation of carbonyl complexes and heterocyclic compounds are described.  相似文献   

16.
Some new diorganotin(IV) complexes of heterocyclic dithiocarbamate having general formula R2Sn(Cl)S2CNR'2 and R2Sn(S2CNR'2)2 [R = 2‐F‐Bz, 3‐Cl‐Bz; NR'2 = N(CH2CH2)2NMe, N(CH2CH2)2NEt, and N(CH2CH2)2NBz] have been prepared, respectively. Elemental analyses, IR, and NMR spectral data characterized all compounds. The crystal structures of (2‐F‐Bz)2Sn(Cl)S2CN(CH2CH2)2NEt 2 and (3‐Cl‐Bz)2Sn[S2CN(CH2CH2)2NEt]2 ⋅ 0.5 HN(CH2CH2)2NH 5 were determined by single crystal X‐ray diffractometer. In the crystal of complex 2 , the tin atom is rendered five‐coordination in a trigonal bipyramidal configuration by coordinating with S atoms of dithiocarbamate groups. For complex 5 , the central Sn atom exists in a skew‐trapezoidal planar geometry defined by two asymmetrically coordinated dithiocarbamate ligands and two 3‐chlorobenzyl groups. © 2005 Wiley Periodicals, Inc. 16:271–277, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20096  相似文献   

17.
The complexes [Pd(Me2PO2)2]3 and Pd(Me2AsO2)2 were prepared from the corresponding acids and palladium(II) acetate. Their structures were deduced by IR and NMR spectroscopy. Addition of pyridine and 2,2′‐bipyridine to [Pd(Me2PO2)2]3 gave the adducts Pd(Me2PO2)2py2 and Pd(Me2PO2)2bipy, which were characterized by 1H NMR spectroscopy. Addition of nicotinic acid and nicotinamide in water gave the adducts Pd(Me2PO2)2L2, whereas in methanol the adducts Pd(Me2PO2)2L were obtained. The cacodylate containing complex formed the adducts Pd(Me2AsO2)2py and Pd(Me2AsO2)2bipy1/2, which are unstable in CDCl3. Triphenylphosphine deoxygenated both Pd(Me2MO2)2 complexes, but the palladium(II) containing products could not be isolated. The expected Pd(Me2P–O)2 reacted further and gave many products, whereas the anticipated Pd(Me2As–O)2 did not bind triphenylphosphine.  相似文献   

18.

Abstract  

The reaction of Me2PO2H and Me2AsO2H with SbCl3, BiCl3, and Bi(NO3)3·5H2O gave the complexes Sb(Me2PO2)3, Sb(Me2AsO2)3, (Me2PO2)2Bi-Cl, Bi(Me2AsO2)3, (Me2PO2)2Bi(NO3), and (Me2AsO2)2Bi(NO3)·H2O, respectively. The arsinato complexes did not react with the Lewis bases pyridine, Ph3P, and Ph3As in acetone. The compounds Sb(Me2AsO2)3 and (Me2AsO2)2Bi(NO3)·H2O reacted to a small extent with nicotinic acid in methanol but Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x in good yields. (Me2AsO2)2Bi(NO3)·H2O in methanol quantitatively rearranged to new complexes with the same composition, [(Me2AsO2)2Bi(NO3)·H2O]′ and [(Me2AsO2)2Bi(NO3)·H2O]″ in the presence of pyridine. With thiophenol in air, Sb(Me2AsO2)3 gave PhSSPh and Me2As-SPh (1:1 mol ratio), (Me2AsO2-SbO) x and some Sb(Me2AsO2)3 was reformed, Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x , PhSSPh, and Me2As-SPh (1:0.6 mol ratio), whereas (Me2AsO2)2Bi(NO3)·H2O quantitatively gave PhSSPh, thus acting as a catalyst for the air oxidation of thiophenol.  相似文献   

19.
Three diiron and tetrairon azadithiolate complexes as models for the active site of [FeFe] hydrogenase were prepared. Reaction of complex Fe2(SCH2OH)2(CO)6 and NH2CH2CH2CH2OCH3 resulted in the diiron azadithiolate hexcarbonyl complex Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)6 ( 1 ) in moderate yield. Furthermore, treatment of complex 1 with mono phosphine ligand PPh3 and diphosphine ligand Ph2PCH2CH2PPh2 in the presence of decarbonylation reagent Me3NO · 2H2O yielded the phosphine‐substituted azadithiolate complexes Fe2[(SCH2)2NCH2CH2CH2OCH3]CO)5(PPh3) ( 2 ) and {Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)5}2(Ph2PCH2CH2PPh2) ( 3 ) respectively. The new complexes 1 – 3 were fully characterized by elemental analysis, IR, 1H, 13C, 31P NMR spectroscopy and X‐ray crystallography. It is worthy to note that the crystallographic studies show the unusual difference of the methoxypropanyl substituent on the N atom of complexes 1 and 2 , largely because of the affection of phosphine ligand PPh3. In addition, complex 1 was found to be a catalyst for H2 production under electrochemical condition.  相似文献   

20.
Co-TiO2 photocatalyst was prepared by a sol–gel method using Co(NO3)2 · 6H2O and tetrabutyl titanate [Ti(OC4H9)4] as raw materials, and Co-TiO2/TiO2 photocatalyst was synthesized by mixing the Co-TiO2 sol with TiO2 sol. The Co-TiO2/TiO2 was characterized by X-ray powder diffraction, UV–Vis diffuse reflection spectrum, scanning electron microscopy, transmission electron microscopy, fluorescence spectra and X-ray photoelectron spectroscopy. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr2O7 2− and photocatalytic oxidation of methyl orange under UV irradiation. The results showed that, for the photocatalytic reduction of Cr2O7 2−, the optimum percentage of Co-doped for the Co-TiO2 was 0.5% (mole ratio of Co/Ti), and the optimum percentage of Co-TiO2 for the Co-TiO2/TiO2 was 2.0% (mole ratio of Co-TiO2/TiO2). The photocatalytic reduction activities of the Co-TiO2/TiO2 and Co-TiO2 are much higher than that of TiO2. However, the photocatalytic oxidation activities of the Co-TiO2/TiO2 and Co-TiO2 are much lower than that of TiO2. Effects of heat treatment on the photocatalytic activities of the Co-TiO2/TiO2 and Co-TiO2 were investigated. The mechanisms of influence on the photocatalytic activity were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号