首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxoplatinates Na2PtO2, Na2PtO3, ?K2PtO3”? and ?Rb2PtO3”?. Hitherto unknown Na2PtO2 (greyish black) was prepared. Na2PtO2 (orthorhombic, D—Immm; a = 4.585, b = 3.119, c = 9.588 Å) is isotypic with Li2CuO2. α-Na2PtO3 (darkyellow; red as single-crystals) is monoclinic, C—C2/c (a = 5.419, b = 9.385, c = 10.752 Å, β = 99.67°), Li2SnO3-type. According to 3-dimensional single crystal data hitherto unknown β-Na2PtO3 (red crystals) is an orthorhombic variant of the Li2SnO3-type (a = 18.838, b = 6.282, c = 9.062 Å, Z = 16, D—Fddd; parameters see text); R = 0.0809, R' = 0.0948 [256 reflexes (hk0—hk6)]. The Madelung part of the lattice energy (MAPLE) is calculated and discussed for α-, β-Na2PtO3, α- and β-PtO2. For the first time we got K2PtO3 and Rb2PtO3.  相似文献   

2.
Preparation and Crystal Structure of the Dialkali Metal Trichalcogenides Rb2S3, Rb2Se3, Cs2S3, and Cs2Se3 Crystalline products were obtained by the reaction of the pure alkali metals with the chalcogens in the molar ratio 2:3 in liquid ammonia at pressures up to 3000 bar and temperatures around 600 K. The substances crystallize in the K2S3 type structure (space group Cmc21(NO. 36)). Unit cell constants see ?Inhaltsübersicht”?. The characteristic feature of this structure are bent polyanions X32?:(X = S,Se). The new described compounds are compared with the other known alkali metal trichalcogenides.  相似文献   

3.
The Crystal Structures of α- and β-K3OCl The orange coloured compound K3OCl has been prepared. It exists in a low temperature modification (α-K3OCl) and a high temperature modification (β-K3OCl). The transition temperature is 364 ± 5 K. The crystal structures were determined by x-ray diffraction. α-K3OCl crystallizes at room temperature in the orthorhombic space group Pbnm (Z = 4) with the cell parameters a = b = 723.9(2) pm and c = 1 027.7(2) pm in the anti-GdFeO3-structure type. The high temperature modification β-K3OCl crystallizes (Z = 1) in the cubic space group Pm3m in the β-Ag3SI-structure type with a = 516.2(2) pm (T = 393 K).  相似文献   

4.
On Thio-, Selenido-, and Telluridogermanates (III): K6Ge2S6, K6Ge2Se6, and Na6Ge2Te6 The new compounds K6Ge2S6 and K6Ge2Se6 crystallize in the monoclinic system, space group C2/m (No 12); lattice constants see “Inhaltsübersicht”. The compounds are isotypic and form the K6Si2Te6 structure. Na6Ge2Te6 crystallizes in the K6Sn2Te6 structure, monoclinic, space group P21/c (No 14); lattice constants see “Inhaltsübersicht”.  相似文献   

5.
Inhaltsübersicht. Die Verbindungen K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2 und Cs2MnTe2 wurden durch Umsetzungen von Alkalimetall-carbonaten mit Mangan bzw. Mangantellurid in einem mit Chalkogen beladenen Wasserstoffstrom erhalten. Kristallstrukturuntersuchungen an Einkristallen ergaben, daß alle neun Verbindungen isotyp kristallisieren (K2ZnO2-Typ, Raumgruppe Ibam). Untersuchungen zum magnetischen Verhalten zeigen antiferromagnetische Kopplungen der Manganionen in den [MnX4/22–]-Ketten, On Alkali Metal Manganese Chalcogenides A2MnX2 with A K, Rb, or Cs and X S, Se, or Te The compounds K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2, and Cs2MnTe2 were synthesized by the reaction of alkali metal carbonates with Mn or MnTe in a stream of hydrogen charged with chalcogen. Structural investigations on single crystals show that all nine compounds crystallize in isotypic atomic arrangements (K2ZnO2 type, space group Ibam). The magnetic behaviour indicates antiferromagnetic interactions of the manganese ions within the [MnX1/22–] chains.  相似文献   

6.
Na2B2Se7, K2B2S7, and K2B2Se7: Three Perchalcogenoborates with a Novel Polymeric Anion Network Na2B2Se7 (I 2/a; a = 11.863(4) Å, b = 6.703(2) Å, c = 13.811(6) Å, β = 109.41(2)°; Z = 4), K2B2S7 (I 2/a; a = 11.660(2) Å, β = 6.827(1) Å, c = 12.992(3) Å, β = 106.78(3)°; Z = 4), and K2B2Se7 (I 2/a; a = 12.092(4) Å, b = 7.054(2) Å, c = 13.991(5) Å, β = 107.79(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of sodium selenide (potassium sulfide) with boron and sulfur or of potassium selenide and boron diselenide, respectively, at 600°C with subsequent annealing. The crystal structures consist of polymeric anion chains of composition ([B2S7]2?)n or ([B2Se7]2?)n formed by spirocyclically connected five-membered B2S3 (B2Se3) rings and six-membered B2S4 (B2Se4) rings. The nine-coordinate alkaline metal cations are situated in between.  相似文献   

7.
Investigation of the State Diagrams of the Systems Ag2Se0.5Te0.5? Ag2S and Ag2S0.5Te0.5? Ag2Se The Systems Ag2Se0.5Te0.5? Ag2S and Ag2S0.5Te0.5? Ag2Se were investigated by the methods of DTA, X-ray and microstructure analysis and measuring of the conductivity. It was found, that the systems are polythermic sections of the ternary diagram Ag2Te? Ag2Se? Ag2S. In all regions from 0 till 100 Mol.-% Ag2S, resp. Ag2Se, except the phases with composition Ag2Se0.5Te0.5 and Ag2S0.5Te0.5 mixed crystals are formed. The structure of the observed interphases was not investigated. The state diagrams of the systems Ag2Se0.5Te0.5 ?Ag2S and Ag2S0.5Te0.5? Ag2Se are characterized with peritectical destruction at 140°C for the first and eutectical destructions at 70°C for both systems. In the systems Ag2Se0.5Te0.5? Ag2S a peritectical reaction at 780°C is observed.  相似文献   

8.
In comparison with other chalcogenide glassy systems, less attention has been paid to the quasi-ternary (quaternary) system As2(S, Se, Te)3. In this paper, thermal methods were used to characterize ten different quaternary homogenous semiconductor glasses that were prepared by mixing the stoichiometric binary systems As2S3, As2Se3 and As2Te3. The ratios of the constituent binaries in the quasi-ternary glasses exerted a great influence on their thermal spectrum. The samples poor in As2Te3 showed neither the exothermic nor the endothermic peak due to crystallízation (T c) and melting (T m), respectively, but only the glass transition (T g). Three transition temperatures,T g, Tc andT m, were detected for other compositions. On the other hand, a phase separation was observed in the samples rich in As2Te3. A cyclic scanning technique was used to investigate the thermally-induced phases during two consecutive heat ing-cooling cycles covering the temperature rangeT g?Tm. The energy of decompositionE d decreased on increase of the ratio As2S3/As2Se3 (at constant As2Te3), whereas it increased on increase of the ratio As2Te3/As2Se3 (at constant As2Se3 or As2S3).  相似文献   

9.
Temperature Dependent Single Crystal Investigations of α-Na3Hg In contrast to β-Na3Hg (rhomboedrally distorted Li3Bi-type) α-Na3Hg crystallizes in a hitherto poorly understood variant of the Na3As-type. Based on temperature dependent measurements of poly- and single crystalline samples (?100°C < T < +35°C) we show, that in particular the sodium atoms (Na1) located in the region of the octahedral Hg6-holes show a pronounced temperature dependent dynamical behaviour. To a lesser extend this is also true for the tetrahedrally coordinated Na-atoms (Na2). With increasing temperature the former ones more and more approach the centers of the opposite triangular faces of mercury atoms, limiting the Hg6-octahedra along [001]. Occupation of the latter positions by sodium atoms would lead to unusual short interatomic distances dNa? Hg. However before reaching this unreasonable situation α-Na3Hg decomposes under formation of β-Na3Hg.  相似文献   

10.
Modified Synthesis and Crystal Structure Determination of β-Na2CS3 . β-Na2CS3 has been synthesized via a novel route from Na2S and CS2, and its crystal structure has been determined using single crystal techniques (for crystallographic informations see “Inhaltsübersicht”). Structural relations between Li2CO3 and β-Na2CS3 are discussed. The ionic conductivities are 3 · 10?11S cm?1 and 1.3 · 10?2S cm?1 at 50°C and 250°C, respectively.  相似文献   

11.
Preparation and Crystal Structure of Rb2Sn3S7 · 2 H2O and Rb4Sn2Se6 Rb2Sn3S7 · 2 H2O has been prepared by hydrothermal reaction of SnS2 and Rb2CO3 in an with H2S saturated aqueous solution at 190°C. The crystal lattice contains chain anions [Sn3S72?] which display both SnS4 tetrahedra and SnS6 octahedra. Methanolothermal reaction of SnCl2 with Se and Rb2CO3 at 145°C leads to the formation of Rb4Sn2Se6 which contains edge-bridged bitetrahedral [Sn2Se6]4? anions.  相似文献   

12.
K3BiSe3, Rb3BiSe3, and Cs3BiSe3 – Derivatives of the Th3P4 Structure Type The compounds K3BiSe3, Rb3BiSe3, and Cs3BiSe3 were synthesized by heating mixtures of Bi2O3 and the respective alkalicarbonate in a stream of hydrogen saturated by selenium at 850°C. Thin crystals of the compounds appear red in transmitted light. They crystallize isostructural with Na3AsS3, space group P213, lattice constants a = 9.771(5) Å, a = 10.161(3) Å, and a = 10.587(5) Å for K3BiSe3, Rb3BiSe3, and Cs3BiSe3, respectively. The Na3AsS3 structure type is a derivative of the Th3P4 structure type.  相似文献   

13.
The Crystal Structure of K2S3 and K2Se3 Well formed crystals of K2S3 and K2Se3 were obtained by reaction of the elements in liquid ammonia at 500 bar and 150°C. The substances are both orthorhombic, space group Cmc21. Cell constants are: The structure contains S32?(Se32?) polyanions, with S? S? S(Se? Se? Se) angles of 105.4(102.5)°. The S? S(Se? Se) distance is 2.083(2.383) Å.  相似文献   

14.
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 36. Tetrapotassiumhexaphosphide: Preparation, Structure, and Properties of α-K4P6 and β-K4P6 Tetrapotassiumhexaphosphide has been prepared quantitatively by reaction of the elements at 870 K in sealed Nb and Ta ampoules, respectively. Two crystalline modifications are formed: α-K4P6 is stable below 850 K, β-K4P6 is stable above this temperature. Both compounds are black semiconductors (EG(α) = 0.55 eV) with metallic lustre. The orthorhombic structures are defect variants of the hexagonal AlB2 type structures (K4P62) and of a different stacking sequence of this type. Characteristic building units are planar isometric P6 rings, formed by a specific ordering of defects in the partial structure of the major component. The short P? P distances (215.5 pm and 215.0 pm, respectively) are about 30 pm shorter than the distances compared with a single bond (221 pm). They represent one double bond which is delocalized about six bonds or an aromatic 2π-system. The thermal decomposition in tantalum crucibles, the reaction with quartz walls as well as the reaction with benzophenone in monoglyme yields quantitatively K3P7. The reaction with RCl ? Me3SnCl in monoglyme at 223 K results in the formation of P7R3 with high yield (75%). Very probably the valence fluctuating hexaphosphene(4) system is formed at 195 K in the primary reaction step (31P-NMR, singulett at 473 ppm downfield).  相似文献   

15.
Preparation and Crystal Structure of Rb2Ni3Se4 The compound Rb2Ni3Se4 was synthesized by heating a mixture of rubidium carbonate, nickel and selenium at 850°C in an atmosphere of hydrogen. The compound has a golden lustre and crystallizes with the K2Pd3S4-type structure; a = 10.555(3) Å, b = 27.588(6) Å, c = 6.031(6) Å, Z = 8, Fddd (No. 70). The structure can be described as a stacking of layers of the composition Rb2Ni3Se4 with a stacking sequence abcd. The electrostatic part of lattice energy (MAPLE) will be discussed for compounds of the compositions A2M3X4 (A K, Rb, Cs; M Ni, Pd, Pt and X S, Se).  相似文献   

16.
Alkali Metal Manganese Selenides and Tellurides – Synthesis, Crystal and Spin Structures The compounds Rb2Mn3Se4, Cs2Mn3Se4, Rb2Mn3Te4 and Cs2Mn3Te4 were synthesized by the reaction of alkali metal carbonates with chalcogen and Mn or MnCO3 in a stream of hydrogen charged with chalcogen. Structural investigations show that all compounds crystallize in isotypic atomic arrangements (Cs2Mn3S4-type, space group Ibam, Z = 4). Additionally neutron diffraction experiments were carried out and yielded the spin structures of Rb2Mn3Se4 and Cs2Mn3Se4 (Shubnikov space group Ibam'). The structural related selenides ALiMnSe2 and ALiZnSe2 (A = K, Rb or Cs) were synthesized by analogous reactions. All these compounds are isotypic and crystallize in the BaZn2P2-structure type.  相似文献   

17.
Thermal Behaviour of Li3MnO4. II. α- and β-Li2MnO3 By thermal decomposition of Li3MnO4 we obtained two new forms of Li2MnO3: α-Li2MnO3 crystallizes due to Guinier-Simon photographs cubic face-centered with a = 4.092 Å, β-Li2MnO3 hexagonal with a = 4,93, c = 14.24 Å, c/a = 2.89. α-Li2MnO3 is paramagnetic with μ = 3,82 B.M. Below the Neel temperature (≈? 50 K) β-Li2MnO3 is antiferromagnetic. Effective Coordination Numbers, ECoN, are calculated and discussed.  相似文献   

18.
Preparation and Crystal Structure of BaAl2Se4, BaGa2Se4, CaGa2Se4, and CaIn2Te4 The new compounds BaAl2Se4, BaGa2Se4, CaGa2Se4 and CaIn3Te4 crystallize with constants see “Inhaltsübersicht”. The structures are strongly related to the TlSe structure.  相似文献   

19.
A Contribution about BaLaGaO4 and BaNdGaO4: β-K2SO4 Type Related Compounds and about SrLaGaO4 with K2NiF4 Structure (I) BaLaGaO4, (II) BaNdGaO4, and (III) SrLaGaO4 were prepared by solid state reactions and investigated by X-ray single crystal technique. (I) and (II) crystallize with a β-K2SO4 type related structure. Ba2+ and La3+/Nd3+ occupy two point positions in an ordered manner, Ga3+ shows a tetragonal coordination. SrLaGaO4 has K2NiF4 structure. Sr2+ and La3+ are distributed statistically, Ga3+ is surrounded by O2?-octahedra which are stretched along [001].  相似文献   

20.
Phases related to the different forms of K2SO4 have been studied in the Na3PO4? Sr3(PO4)2? EuPO4 system by DTA and X-ray diffraction. They appear within the range of composition limited by the solid solutions NaSr1–xEu2x/3x/4PO4 and Na2+ySr2(1–y)Euy(PO4)2. At high temperature the α-K2SO4 structure type seems to be adopted, while at low temperature the various phases crystallize with structures related to the β-K2SO4 type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号