首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A chemically modified electrode for detection of dihydronicotinamide adenine dinucleotide (NADH) and dihydronicotinamide adenine dinucleotide phosphate (NADPH) is described. Graphite rods were modified by dipping them into solutions of-dimethylamino-1,2-benzophenoxzinium salt (Meldola blue). The modified electrodes were mounted in a flow-through cell in a flow-injection manifold. Samples (50 μl) of pure nicotinamide coenzymes produced strictly linear calibration graphs from 1 μM to 10 mM with a repeatability of 0.2–0.6% RSD. A packed-bed enzyme reactor (210 μl) containing immobilized glucose dehydrogenase was inserted in the manifold for glucose determinations. Oxidized coenzyme was also added to the carrier electrolyte. Straight calibration graphs were again obtained up to 1mM β-d-glucose. The detection limit was 0.25 μM β-d-glucose for 50-μl samples. The electrode was kept at ?50 to 0 m V vs. SCE which was low enough to avoid interferences from ascorbic acid, uric acid or quinones.  相似文献   

2.
A novel composite was fabricated through dispersing multiwalled carbon nanotubes (MWNTs) in gold nanoparticle (GPs) colloid stabilized by chitosan and ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4). Transmission electron microscopy (TEM) experiment showed that the GPs highly dispersed on the MWNTs probably due to the electrostatic interaction among GPs, MWNTs and the imidazolium cation of BMIMBF4. X‐ray photoelectron spectroscopy (XPS) indicated that thus‐formed gold nanostructure was mediated by BMIMBF4. When glucose oxidase (GOD) was immobilized on the composite (MWNTs‐GPs) its ultraviolet‐visible absorption spectrum kept almost unchanged. The immobilized GOD coated glassy carbon electrode (GOD/MWNTs‐GPs/GC) exhibited a pair of well‐defined peaks in 0.10 M pH 7.0 phosphate buffer solution (PBS), with a formal potential of ?0.463 V (vs. SCE). The electrochemical process involved two‐electron transfer. The electron transfer coefficient was ca.0.56 and the electron transfer rate constant was 9.36 s?1. Furthermore, the immobilized GOD presented good catalytic activity to the oxidation of glucose in air‐saturated PBS. The Km and Im values were estimated to be 13.7 μM and 0.619 μA. The GOD/MWNTs‐GPs/GC electrode displayed good stability and reproducibility.  相似文献   

3.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

4.
《Electroanalysis》2006,18(8):748-756
Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross‐linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 μM to 1.8 mM with a detection limit of 22 μM and the pyruvate biosensor in the range 90 to 600 μM with a detection limit of 34 μM. The relative standard deviations were found to be 2.1% (n=3) and 2.8% (n=4) respectively. The interference effects of various compounds were also studied. The glucose content of several types of wine and the amount of pyruvate in onion and garlic were determined and the results were compared with those obtained by standard spectrophotometric methods.  相似文献   

5.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   

6.
A novel enzymatic biosensing platform toward glucose is achieved with nanocomposite of magnetic nanoparticles (Fe3O4−CS−CD) and multi-walled carbon nanotubes (MWCNTs). The synergistic effect of chitosan, β-cyclodextrin and MWCNTs can facilitate electron transfer between enzyme and electrode based on the promoting results of the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The new biosensors exhibited direct electron transfer (DET) from enzyme to electrode after glucose oxidase (GOx) was immobilized on the modified electrode with the nanocomposite. Consequently, the enzymatic glucose biosensor displayed a considerably wide linear range (40 μM to 1.04 mM) with a high sensitivity of 23.59 μA mM−1cm−2, low detection limit of 19.30 μM, good selectivity, reproducibility and repeatability for detecting glucose. In addition, the current response still retained at 93.4 % after 25 days. Furthermore, the practical application of glucose biosensor was test in human serum samples with satisfactory accuracy, demonstrating promising and practical potential in biomedical diagnostics.  相似文献   

7.
Kiba N  Itagaki A  Furusawa M 《Talanta》1997,44(1):131-134
A flow-injection system with an immobilized enzyme reactor is proposed for the determination of l-phenylalanine. Phenylalanine dehydrogenase from Rhodoccus sp. M4 was immobilized on tresylated poly (vinyl alcohol) beads (13 mum) and packed into a stainless-steel column (5 cm x 4 mm i.d.). Serum sample was deproteinized with tungstic acid and filtered through an ultrafiltration membrane. The sample solution (30 mul) was injected into the carrier stream (water). The NADH formed was detected at 465 nm (excitation at 340 nm). The calibration graph was linear for 0.9-600 mum l-phenylalanine; the detection limit was 0.3 mum. The sample throughout was 25 h(-1) without carryover. The half-life period of the immobilized enzyme was 23 days.  相似文献   

8.
A method for increasing the sensitivity of enzyme sensors based on biocatalytic accumulation of an intermediate product was investigated using a biospecific electrode consisting of an immobilized glucose dehydrogenase-lactate dehydrogenase-lactate monooxygenase membrane and an electrochemical oxygen probe. Addition of the analyte (glucose) and an excess of NAD+ to the background solution permits NADH to be biocatalytically preconcentrated in the enzyme membrane. When this reaction has approached equilibrium, the sensor signal is generated by injection of an excess of pyruvate, thus starting oxygen consumption catalysed by the sequential lactate dehydrogenase-lactate monooxygenase reaction. Glucose can be determined at concentrations between 10 and 100 μM. Compared with operation of the sensor without NADH preconcentration, the increase in the sensitivity to glucose is 18-fold in the current-time mode and 40-fold in the derivative current-time mode. The measuring regime permits interferences from the sample solution to be avoided.  相似文献   

9.
Glucose oxidase is immobilized onto a cellulose acetate membrane by glutaraldehyde linkage, and the membrane is used to cover the platinum electrode of a hydrogen peroxide sensor. A silanized polycarbonate membrane then covers the enzyme layer, and extends the linear calibration range to higher concentrations. The sensor, when incorporated into a flow-injection system, allows the determination of glucose at levels up to 1 M in soft drinks at a rate of 60 samples h?1 without sample dilution.  相似文献   

10.
Bilayer glucose isomerase was immobilized in porousp-trimethylaminepolystyrene (TMPS) beads through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme-to-matrix ratio of 924 IU/g wet carrier, and hexamethylene bis(trimethylammonium iodine) concentration of 15 mg/mL giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per d.  相似文献   

11.
A highly selective, fast and stable biosensor for determination of glucose in soluble coffee has been developed. The biosensor electrode consist of a thin film of ferric hexacyanoferrate (Prussian Blue or PB) electrodeposited on the glassy carbon electrode (GCE) (to provide a catalytic surface for the detection of hydrogen peroxide) glucose oxidase immobilized on top of the electrode and a Nafion® polymer layer. The stability of the PB film and the biosensor was evaluated by injecting standard-solution (50 μM H2O2 and 0.5 mM glucose) during 4 h in a flow-injection system with the electrodes polarized at −50 mV versus Ag/AgCl. The system is able to handle about 60 samples per hour and is very stable and suitable for industrial control. Determination of glucose in the range 2.5 and 15% (w/v) in phosphate buffer with precision (r.s.d. < 1.5%) has been achieved and is in agreement with the conventional procedures. Linear calibration in the range of 0.15 and 2.50 mM with detection limits of ca. 0.03 mM has been obtained. The morphology of the enzyme glucose oxidase on the modified electrode has been analyzed by scanning electron microscopy (SEM) measurements.  相似文献   

12.
The direct electrochemistry of glucose oxidase (GOD) immobilized on the designed titanium carbide‐Au nanoparticles‐fullerene C60 composite film modified glassy carbon electrode (TiC‐AuNPs‐C60/GCE) and its biosensing for glucose were investigated. UV‐visible and Fourier‐transform infrared spectra of the resulting GOD/TiC‐AuNPs‐C60 composite film suggested that the immobilized GOD retained its original structure. The direct electron transfer behaviors of immobilized GOD at the GOD/TiC‐AuNPs‐C60/GCE were investigated by cyclic voltammetry in which a pair of well‐defined, quasi‐reversible redox peaks with the formal potential (E0′) of ‐0.484 V (vs. SCE) in phosphate buffer solution (0.05 M, pH 7.0) at the scan rate of 100 mV·s?1 were obtained. The proposed GOD modified electrode exhibited an excellent electrocatalytic activity to the reduction of glucose, and the currents of glucose reduction peak were linearly related to glucose concentration in a wider linearity range from 5.0 × 10?6 to 1.6 × 10?4 M with a correlation coefficient of 0.9965 and a detection limit of 2.0 × 10?6 M (S/N = 3). The sensitivity and the apparent Michaelis‐Menten constant (KMapp) were determined to be 149.3 μA·mM?1·cm?2 and 6.2 × 10?5 M, respectively. Thus, the protocol will have potential application in studying the electron transfer of enzyme and the design of novel electrochemical biosensors.  相似文献   

13.
Bilayer glucose isomerase was immobilized in porousp-trimethylamine-polystyrene (TMPS) beads, through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme:matrix ratio of 924 IU/g wet carrier, and hexamethylenebis(trimethylammonium iodine) concentration of 15 mg/mL, giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per day.  相似文献   

14.
Immobilized mannitol dehydrogenase is used for the determination of D-fructose in a flow-injection system. The enzyme is immobilized on poly(vinyl alcohol) beads. The oxidation of NADH occurs simultaneously and the disappearance of NADH is measured fluorimetrically. The response is linearly related to fructose concentration in the range 6–600 μM; 30 samples per hour can be analysed. The immobilized enzyme retains over 80% of its initial activity after repetitive use for 2 months.  相似文献   

15.
A flow-injection system for the determination of l-alanine is described. Alanine dehydrogenase is immobilized on poly(vinyl alcohol) beads and used in a packed-bed enzyme reactor. The system responds linearly to injected samples (50 μl) in the concentration range 0.5–500 μM. The maximum throughput was 40 samples per hour. The immobilized enzyme reactor was stable for at least 6 weeks. Its usefulness for assay of l-alanine in serum and beverages is described.  相似文献   

16.
An electrochemical noise (ECN) device was utilized for the first time to study and characterize a glucose/O2 membraneless biofuel cell (BFC) and a monopolar glucose BFC. In the glucose/O2 membraneless BFC, ferrocene (Fc) and glucose oxidase (GOD) were immobilized on a multiwalled carbon nanotubes (MWCNTs)/Au electrode with a gelatin film at the anode; and laccase (Lac) and an electron mediator, 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS), were immobilized on a MWCNTs/Au electrode with polypyrrole at the cathode. This BFC was performed in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air, with a maximum power density of 8 μW/cm2, an open‐circuit cell voltage of 0.29 V, and a short‐circuit current density of 85 μA/cm2, respectively. The cell current at the load of 100 kΩ retained 78.9% of the initial value after continuous discharging for 15 h in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air. The performance decrease of the BFC resulted mainly from the leakage of the ABTS mediator immobilized at the cathode, as revealed by the two‐channel quartz crystal microbalance technique. In addition, a monopolar glucose BFC was performed with the same anode as that in the glucose/O2 membraneless BFC in a stirred phosphate buffer solution (pH 7.0) containing 40 mmol/L glucose, and a carbon cathode in Nafion‐membrane‐isolated acidic KMnO4, with a maximum power density of 115 μW/cm2, an open‐circuit cell voltage of 1.24 V, and a short‐circuit current density of 202 μA/cm2, respectively, which are superior to those of the glucose/O2 membraneless BFC. A modification of the anode with MWCNTs for the monopolar glucose BFC increased the maximum power density by a factor of 1.8. The ECN device is highly recommended as a convenient, real‐time and sensitive technique for BFC studies.  相似文献   

17.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

18.
A novel multilayer gold nanoparticles/multiwalled carbon nanotubes/glucose oxidase membrane was prepared by electrostatic assembly using positively charged poly(dimethyldiallylammonium chloride) to connect them layer by layer. The modification process and membrane structures were characterized by atomic force microscopy, scanning electron microscopy and electrochemical methods. This membrane showed excellent electrocatalytic character for glucose biosensing at a relatively low potential (?0.2 V). The Km value of the immobilized glucose oxidase was 10.6 mM. This resulting sensor could detect glucose up to 9.0 mM with a detection limit of 128 μM and showed excellent analytical performance.  相似文献   

19.
A flow-injection analysis system incorporating a glassy carbon voltammetric detector cell is described. Meptazinol (0.01–10 μg ml-1) can be determined by electro-chemical oxidation in a carrier stream of 0.05 M sodium acetate—0.1 M acetic acid in 98% ethanol at sampling rates up to 80 samples per hour.  相似文献   

20.
Lv Y  Zhang Z  Chen F 《Talanta》2003,59(3):571-576
A chemiluminescence (CL) biosensor on a chip coupled to microfluidic system is described in this paper. The CL biosensor measured 25×45×5 mm in dimension, was readily produced in analytical laboratory. Glucose oxidase (GOD) was immobilized onto controlled-pore glass (CPG) via glutaraldehyde activation and packed into a reservoir. The analytical reagents, including luminol and ferricyanide, were electrostatically co-immobilized on an anion-exchange resin. The most characteristic of the biosensor was to introduce the air as the carrier flow in stead of the common solution carrier for the first. The glucose was sensed by the CL reaction between hydrogen peroxide produced from the enzymatic reaction and CL reagents, which were released from the anion-exchange resin. The proposed method has been successfully applied to the determination of glucose in human serum. The linear range of the glucose concentration was 1.1-110 mM and the detection limit was 0.1 mM (3σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号