首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
It is common for peristaltic micropumps to have large compression ratios. In the limit, the chamber of the pump is completely blocked by the membrane to prevent back flow. Different from this kind of pump, a micropump with small compression ratios is proposed in this study. With small oscillation amplitudes the membrane of the pump can reciprocate at high frequencies to improve its pumping flow. Both the multidimensional method and the lumped‐element method are employed for analysis. For this kind of peristaltic micropump the working fluid is allowed to flow freely in the forward and backward directions. Therefore, the operating sequences for the high‐compression ratio type of pumps are not appropriate. It is shown that the theoretical net flow rate is zero for the four‐phase and six‐phase modes of sequence and becomes negative for the three‐phase mode unless regulators, such as the nozzle/diffusers, are incorporated to rectify the flow. However, this pump becomes very attractive by reversing the operating sequence of the three‐phase mode because positive net flow is yielded. It is seen that with the reversed three‐phase mode and the nozzle/diffuser as connecting channels, the pumping effectiveness is greatly enhanced. The pumps with both two chambers and three chambers are under consideration in the study. Copyright ©2011 John Wiley & Sons, Ltd.  相似文献   

2.
Pulsatile turbulent flow characteristics in an axisymmetric aortic aneurysm (AA) model were analyzed numerically using a simulated physiological waveform. The transport equations were solved using the finite element formulation based on the Galerkin method of weighted residuals. A fully-coupled fluid–structure interaction (FSI) analysis was utilized in this work. We investigated the effects of turbulent flow characteristics on the distribution of wall stress and flow patterns in AA models. Wall stress distributions were calculated by computational solid stress (CSS) model, which ignores the effect of the blood flow, and the FSI model that takes into account flow and solid mechanics. Our results showed that peak wall stress and peak deformation were found to occur shortly after peak systolic flow in the FSI model and at the peak luminal pressure condition in the CSS model. Further, CSS model underestimated wall stress calculations when compared to the FSI model. There were also significant differences in the structure of flow fields between the flexible and rigid wall aneurysm models. Contour plots of kinetic energy dissipation and the application of the Kolmogorov microscale suggest that the conditions that result in red blood cell damage and platelet activation most likely occur in the near-wall region of AA during turbulent flow.  相似文献   

3.
邢景棠 《力学进展》2016,(1):95-139
本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用。讨论了四种数值分析方法:(1)混合有限元–子结构–子区域数值模型,以求解有限域线性流固耦合问题,如流体晃动,声腔–结构耦合,流体中的压力波,化工容器的地震响应,坝水耦合等;(2)混合有限元–边界元数值模型,以求解涉及无限域的线性流固耦合问题,如大型浮体承受飞机降落冲击,船舰的炮击回应等;(3)混合有限元–有限差分(体积)数值模型,以求解不涉及破浪和两相分离的非线性流固耦合问题;(4)混合有限元–光滑粒子数值模型,以求解涉及破浪和两相分离的非线性流固耦合问题。文中推荐分区迭代求解过程,以便应用现有的固体及流体求解器,于毎一时间步长分别求解固体及流体的方程,通过耦合迭代收敛,向前推进以达问题求解。文中选用的工程应用例子包含气–液–壳三相耦合,液化天然气船水晃动,人体步行冲击引起的声腔–建筑结构耦合,大型浮体承受飞机降落冲击的瞬态动力回应,涉及破浪和两相分离的气–翼耦合及结构于水上降落的冲击。数值分析结果与可用的实验或计算结果作了比较,以说明所述方法的精度及工程应用价值。文中列出了基于流固耦合的波能采积装置模型,以应用线性系统的共振及非线性系统的周期解原理,有效地采积波能。本文列出了231篇参考文献,以便读者进一步研讨所感兴趣方法。  相似文献   

4.
The paper presents a numerical analysis of the inelastic deformation process in porous rocks during different stages of its development and under non-equiaxial loading. Although numerous experimental studies have already investigated many aspects of plasticity in porous rocks, numerical modeling gives valuable insight into the dynamics of the process, since experimental methods cannot extract detailed information about the specimen structure during the test and have strong limitations on the number of tests. The numerical simulations have reproduced all different modes of deformation observed in experimental studies: dilatant and compactive shear, compaction without shear, uniform deformation, and deformation with localization. However, the main emphasis is on analysis of the compaction mode of plastic deformation and compaction localization, which is characteristic for many porous rocks and can be observed in other porous materials as well. The study is largely inspired by applications in petroleum industry, i.e. surface subsidence and reservoir compaction caused by extraction of hydrocarbons and decrease of reservoir pressure. Special attention is given to the conditions, evolution, and characteristic patterns of compaction localization, which is often manifested in the form of compaction bands. Results of the study include stress-strain curves, spatial configurations and characteristics of localized zones, analysis of bifurcation of stress paths inside and outside localized zones and analysis of the influence of porous rocks properties on compaction behavior. Among other results are examples of the interplay between compaction and shear modes of deformation.To model the evolution of plastic deformation in porous rocks, a new constitutive model is formulated and implemented, with the emphasis on selection of adequate functions defining evolution of yield surface with deformation. The set of control parameters of the model is kept as short as possible; the parameters are carefully selected to have simple and intuitive physical interpretation whenever possible. Results demonstrate that evolution of the yield surface with deformation has major influence on the resulting characteristics of deformation patterns, which is not sufficiently acknowledged in the literature.  相似文献   

5.
倪锐晨  孙梓贤  李家盛  张雄 《力学学报》2022,54(12):3269-3282
结构在爆炸载荷作用下的毁伤现象涉及强非线性激波、固体结构极端变形和破坏破碎、强流固耦合, 给数值计算方法带来了极大的困难与挑战. 针对结构爆炸毁伤问题, 建立了浸没多介质有限体积物质点法(iMMFV-MPM), 采用基于黎曼求解器的多介质有限体积法(MMFVM)模拟爆炸产物和空气的多介质流体, 采用物质点法(MPM)模拟固体结构, 并将提出的基于拉格朗日乘子的连续力浸没边界法(lg-CFIBM)扩展到多介质流体中以处理流固耦合边界条件. 该算法在每个时间步严格满足流固耦合界面处的速度边界条件及动量守恒方程, 不需要重构流固耦合界面, 能够有效地模拟近场爆炸下爆炸产物与结构的相互作用、激波与结构的相互作用和演化以及结构的动态断裂和拓扑变化. 利用iMMFV-MPM对近场爆炸下方形钢筋混凝土靶板的失效模式、外爆载荷下建筑物的毁伤现象以及多腔室内爆炸试验进行了模拟, 模拟结果与相关实验数据吻合良好, 验证了所建立的流固耦合算法的有效性及精度.   相似文献   

6.
平流层飞艇绕流场与柔性变形的数值模拟   总被引:3,自引:1,他引:3  
处于平流层流场中的飞艇,其整体刚度较小,为柔性体,可视为弹性薄膜结构,外围的流场的状态分布与其形状有着密切的关系,从本质上说是一个流固耦合问题。本论文以此为背景,分析了平流层飞艇的外围流场与柔性蒙皮变形的非动态耦合关系。我们采用叠代计算方法来处理这一问题,其中飞艇的三维流场的计算本文采用基于有限体积法的压力修正SIMPLE算法,而飞艇弹性变形的数值模拟计算应用了薄壳无矩理论。本文比较了气动弹性变形和静态超压变形两种不同情况下的飞艇流场压力分布以及气动参数,分析了飞艇变形与流动参数、气动荷载变化的关系。  相似文献   

7.
A 2D numerical flow model, developed at the Research unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions at ULg, has been applied to flows in a macro‐rough channel. The model solves the shallow water equations (SWE) with a two length scale, depth‐integrated k‐type approach for turbulence modeling. Data for the comparison have been provided by experiments conducted at the Laboratory of Hydraulic Constructions at EPFL. In the experiments with different non‐prismatic channel configurations, namely large‐scale cavities at the side walls, three different 2D flow characteristics could be observed in cavities. With the used numerical model features, especially regarding turbulence and friction modeling, a single set of bottom and side wall roughness could be found for a large range of discharges investigated in a prismatic channel. For the macro rough configurations, the numerical model gives an excellent agreement between experimental and numerical results regarding backwater curves and flow patterns if the side wall cavities have low aspect ratios. For configurations with high aspect ratios, the head loss generated by the preservation of important recirculation gyres in the cavities is slightly underestimated. The results of the computations reveal clearly that the separation of turbulence sources in the mathematical model is of great importance. Indeed, the turbulence related to 2D transverse shear effects and the 3D turbulence, generated by bed friction, can have very different amplitude. When separating these two effects in the numerical models, most of the flow features observed experimentally can be reproduced accurately. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用. 讨论了四种数值分析方法: (1) 混合有限元-子结构-子区域数值模型, 以求解有限域线性流固耦合问题, 如流体晃动, 声腔-结构耦合, 流体中的压力波, 化工容器的地震响应,坝水耦合等; (2) 混合有限元-边界元数值模型, 以求解涉及无限域的线性流固耦合问题, 如大型浮体承受飞机降落冲击, 船舰的炮击回应等; (3) 混合有限元-有限差分(体积) 数值模型, 以求解不涉及破浪和两相分离的非线性流固耦合问题; (4) 混合有限元-光滑粒子数值模型, 以求解涉及破浪和两相分离的非线性流固耦合问题. 文中推荐分区迭代求解过程, 以便应用现有的固体及流体求解器, 于毎一时间步长分别求解固体及流体的方程, 通过耦合迭代收敛, 向前推进以达问题求解. 文中选用的工程应用例子包含气-液-壳三相耦合, 液化天然气船水晃动, 人体步行冲击引起的声腔-建筑结构耦合, 大型浮体承受飞机降落冲击的瞬态动力回应, 涉及破浪和两相分离的气-翼耦合及结构于水上降落的冲击. 数值分析结果与可用的实验或计算结果作了比较, 以说明所述方法的精度及工程应用价值. 文中列出了基于流固耦合的波能采积装置模型, 以应用线性系统的共振及非线性系统的周期解原理, 有效地采积波能. 本文列出了231 篇参考文献, 以便读者进一步研讨所感兴趣方法.  相似文献   

9.
Fluid–structure interaction (FSI) phenomena are of significant importance in several engineering fields. Recently developed active flow control devices regulate the FSI in order to control the dynamic response of the structure that is involved. As a first step to use active control, computationally efficient reduced-order models are required. The reduced-order models must be able to predict the nonlinear structural dynamic response given an incoming flow condition. This paper presents a computationally efficient method for the construction of a hybrid reduced-order model for FSI problems based on data obtained through high-fidelity numerical simulations. The model splits the force and the structural dynamic response into two separate blocks and uses model reduction techniques to account for the flow field information. The current model is tested on a vibrating rigid cylinder submerged in a flow at low Reynolds number regime.  相似文献   

10.
11.
Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.  相似文献   

12.
This paper presents a combined experimental and numerical study of the flow characteristics of round vertical liquid jets plunging into a cylindrical liquid bath. The main objective of the experimental work consists in determining the plunging jet flow patterns, entrained air bubble sizes and the influence of the jet velocity and variations of jet falling lengths on the jet penetration depth. The instability of the jet influenced by the jet velocity and falling length is also probed. On the numerical side, two different approaches were used, namely the mixture model approach and interface-tracking approach using the level-set technique with the standard two-equation turbulence model. The numerical results are contrasted with the experimental data. Good agreements were found between experiments and the two modelling approaches on the jet penetration depth and entraining flow characteristics, with interface tracking rendering better predictions. However, visible differences are observed as to the jet instability, free surface deformation and subsequent air bubble entrainment, where interface tracking is seen to be more accurate. The CFD results support the notion that the jet with the higher flow rate thus more susceptible to surface instabilities, entrains more bubbles, reflecting in turn a smaller penetration depth as a result of momentum diffusion due to bubble concentration and generated fluctuations. The liquid average velocity field and air concentration under tank water surface were compared to existing semi-analytical correlations. Noticeable differences were revealed as to the maximum velocity at the jet centreline and associated bubble concentration. The mixture model predicts a higher velocity than the level-set and the theory at the early stage of jet penetration, due to a higher concentration of air that cannot rise to the surface and remain trapped around the jet head. The location of the maximum air content and the peak value of air holdup are also predicted differently.  相似文献   

13.
随着计算科学的发展,研究人员为探索流固耦合问题的物理机理而提出了众多的数值方法。其中,耦合的移动粒子半隐式方法 MPS(Moving Particle Semi-Implicit method)和有限单元法FEM(Finite Element method)为流固耦合问题的数值仿真工作提供了新的途径。本文所有流场的数值模拟工作均采用课题组自主开发的无网格法求解器MLParticle-SJTU来完成。该求解器在原始的MPS法基础上,对核函数、压力梯度模型、压力泊松方程的求解和自由面判断方式等方面进行了改进。此外,在该求解器框架内,基于FEM法拓展了针对结构场进行求解的功能。首先,对MPS和FEM方法的理论模型及其耦合策略进行了介绍。然后,采用该自研MPS-FEM耦合求解器,数值模拟了溃坝流动对弹性结构的冲击及其相互作用的标准问题。通过将结构变形及自由面波型变化等结果与已发表结果进行对比,验证了该求解器在处理带自由面剧烈变化的粘性流体和柔性变形结构的耦合作用问题上的可行性。  相似文献   

14.
This paper presents a numerical study to address wake control of a circular cylinder subjected to two-dimensional laminar flow regime using single and multiple flexible splitter plates attached to the cylinder. Three different cases are presented in the study, covering cylinders with one, two and three horizontally attached splitter plates while the locations of the plates around the cylinders are varied. The length of the splitter plates was equal to the cylinder diameter and Reynolds number was 100. Due to the flexibility of the plates, the problem was modeled as a Fluid–Structure Interaction (FSI) problem and the commercial finite element software, Comsol Multiphysics, was utilized to solve this problem using Arbitrary Lagrangian–Eulerian (ALE) method. Vortex shedding frequency and fluid forces acting on the cylinder are investigated, along with a comprehensive parametric study to identify the optimum arrangement of the plates for maximum drag reduction and maximum vortex shedding frequency reduction. The numerical results associated to the flexible splitter plates are also compared with the corresponding rigid splitter plate cases investigated in a previous study. Moreover, the tip amplitude of the plates and the maximum strains were measured in order to find an optimum position for placing a piezoelectric polymer to harvest energy from the flow.  相似文献   

15.
自由液面大晃动的流固耦合数值分析方法研究进展   总被引:2,自引:0,他引:2  
本文较为全面地评述了国内外对具有自由液面大晃动的流固耦合问题的研究。在第2节,以两种典型的工程问题(石油化工储液罐抗震性和提高机理问题和液态金属快中子增殖堆主容器流固耦合问题)为背景全面评述了这类流固耦合问题的有关研究进展;文章的第3节较为深入讨论了这类流固耦合问题中所采用的分析方法(包括解析方法、半解析方法和数值方法以及问题描述的ALE格式等)和分析模型(包括位移-位移模型和多种的位移-势模型等);第4节首先从问题求解方面,说明了具有自由液面大晃动的流固耦合问题的性质和特点,然后讨论了交替求解方法及其对求解此类问题的特别适应性;最后,本文给出了这方面今后应进一步研究的问题。  相似文献   

16.
刚-柔耦合多体系统动力学建模与数值仿真   总被引:17,自引:1,他引:17  
柔性多体系统动力学传统的混合坐标建模方法忽略了变形位移的高次耦合变形量,是一种零次近似方法,其适用范围受到限制。本文以中心刚体、柔性粱及末端质量组成的刚柔耦合系统为对象,考虑了有粘性阻尼及风阻的情况。在柔性粱的纵向变形位移中计及了横向位移引起的轴向变形,并采用有限元方法和Hamilton变分原理导出了系统的刚柔耦合一次近似的动力学方程。该方程充分计及了中心刚体的大范围运动与柔性粱的弹性变形运动的相互耦合,并采用一致的方法引入了阻尼因素。文中最后提供了一个比“动力刚化”问题更具有一般性的仿真计算反例,进一步说明了零次近似方法在处理某些刚一柔耦合动力学问题时的缺陷,同时表明了由一次近似模型可得到正确合理的结论。  相似文献   

17.
The numerical calculation of a steady two-dimensional viscous flow past a flexible membrane is treated. Both edges of the membrane are fixed in the flow and its chord is set normal to the flow. The Navier-Stokes equation in terms of the stream function and the vorticity is transformed to the body fitted coordinate system. The numerical calculations, based on a finite difference method and relaxation method, are carried out for several values of the membranes tension for cases when the Reynolds numbers are 5, 10 and 20. It is found that two different shapes of the membranes are possible at a given value of tension and Reynolds number: one with a small deformation, and the other with a large deformation. Two vortices appear in the concave region of the membrane if its deformation increases beyond a certain extent.  相似文献   

18.
The hydraulic performance of fluid in a cross-corrugated channel has been investigated, numerically and experimentally, by a three-dimensional model with an exact geometry of the heat exchanger. The distributions of the fluid and local flow characteristics have been discussed, especially for the flow around the contact points in the developing and periodic fully developed sections. The velocity and pressure variations in different cross sections have also been presented. Experiments have been carried out to validate the numerical predictions. The friction factors between the numerical computation and the experimental data are in a reasonable agreement in the range of Reynolds number being equal to 660–2,000.  相似文献   

19.
We numerically and theoretically investigate the flow generated at the exit section of a piston/cylinder arrangement that is generally used in experiments to produce vortex rings. Accurate models for the velocity profile in this section (also called specified discharge velocity, SDV models) are necessary in (i) numerical simulations of laminar vortex rings that do not compute the flow inside the cylinder and (ii) in slug-models that provide a formula for the total circulation of the flow. Based on the theoretical and numerical analysis of the flow evolution in the entrance region of a pipe, we derive two new and easy to implement SDV models. A first model takes into account the unsteady evolution of the centerline velocity, while the second model also includes the time variation of the characteristics of the boundary layer at the exit plane of the vortex generator. The models are tested in axisymmetric direct numerical simulations of vortex rings. As distinguished from classical SDV model, the new models allow to accurately reproduce the characteristics of the flow. In particular, the time evolution of the total circulation is in good agreement with experimental results and previous numerical simulations including the vortex generator. The second model also provides a more realistic time evolution of the vortex ring circulation. Using the classical slug-model and the new correction for the centerline velocity, we finally derive a new and accurate analytical expression for the total circulation of the flow.  相似文献   

20.
A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号