首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
射流冲击水垫塘入射点旋涡掺气特性的研究   总被引:1,自引:0,他引:1  
通过实验研究了不掺气射流冲击水垫塘入射点旋涡掺气的特性。实验结果表明:空气从射流入射点被卷入后,沿射流剪切层扩散;入射点掺气浓度随水垫深度的减小而增加;剪切层内水气混合体的流速分布具有误差函数形式;在剪切层内、外区,其掺气浓度分别符合高斯分布,与理论计算吻合良好。另外,还从理论上导出了射流入射点附近水气混合层的厚度,并给出了计算掺气量的公式。  相似文献   

2.
A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements.  相似文献   

3.
Experiments with large diameter gravity driven impacting liquid jets   总被引:2,自引:0,他引:2  
Storr  G. J.  Behnia  M. 《Experiments in fluids》1999,27(1):60-69
 The phenomenon of a liquid jet released under gravity and falling through or impacting onto another liquid before colliding with an obstructing solid surface has been studied experimentally under isothermal conditions. Usually the jet diameter was sufficiently large to ensure jet coherency until collision. Direct flow visualization was used to study jets released into water pools with no air head space and jets impacting onto water pools after falling through an air head space. It is shown that distances predicting the onset of buoyancy and the entrainment of air using derivations from continuous plunging jets, are not applicable for impacting jets. The morphology of jet debris after collision with the solid surfaces correlates with the wetting properties of the jet liquid on the surface. Received: 28 November 1997 / Accepted: 21 May 1998  相似文献   

4.
A numerical approach was proposed to simulate time-dependent evolution of the liquid front during the pore-level infiltration of liquids into porous structures. It considers the multiphase problem of liquid penetration into the pore(s) initially occupied with air and the simultaneous escaping of air. The Volume-of-Fluid (VOF) method was employed using a two-dimensional model of the graphite pore structure. The proposed method is capable of tracking the evolution of liquid front and yields the infiltration criteria for wetting and non-wetting liquids. Contribution of various driving forces (resulting from pressure gradient, gravity and interfacial effects) to infiltration and interface behavior including the liquid front shape, position and velocity was investigated. Interface pinning (temporary and permanent) and wicking flow through the pore(s) were investigated during infiltration of wetting liquids, whereas pore-level fingering and void formation (entrapment of air within the pore) were observed for non-wetting liquids. The results were verified against the results of coupled VOF level-set method, known to be more accurate for interface tracking. Moreover, the results of liquid penetration length during the wicking flow through a network of pores in series were validated with good agreement against the experimental results of unidirectional horizontal infiltration of graphite foam, and a modified Washburn equation.  相似文献   

5.
A computational multiphysics model for simulating the formation and breakup of droplets from axisymmetric charged liquid jets in electric fields is developed. A fully-coupled approach is used to combine two-phase flow, electrostatics, and transport of charged species via diffusion, convection, and migration. A conservative level-set method is shown to be robust and efficient for interface tracking. Parametric simulations are performed across a range of fluid properties corresponding to commonly used liquids in inkjet printing and spray applications to examine their role in jet evolution and droplet formation. Specifically, the effects of electric potential drop, surface tension, viscosity, and mobility are investigated. Droplet velocity and size distributions are calculated, and the corresponding mean values are found to increase and decrease respectively with increasing electric field strength. The variations in droplet velocity and size are quantified, and droplet size and charge levels agree well with experimental values. Increasing mobility of charged species is found to enhance jet velocity and accelerate droplet formation by shifting charge from the liquid interior to the interface.  相似文献   

6.
Three-dimensional dynamic gas–liquid flow simulations that accurately track the phase interface are numerically challenging. This article presents a numerical study of the performance of the level-set phase–interface tracking method when combined with extremely high order (7th to 11th) weighted essentially non-oscillatory (WENO) advection schemes for gas–liquid free surface flows. Comparisons between simulation results and prior benchmark results suggest that such a combination of methods can be satisfactorily applied to the level-set and Navier-Stokes equations for free surface flow simulations when volume conservation is enforced at every time step, and minor numerical oscillations are suppressed through use of an artificial viscosity term. In particular, simulations of solid body rotation, the unsteady flow following an ideal dam break, tank sloshing, and the rise of a single bubble all agree with analytical or experimental results to within ± 3.12% when the level-set method is combined with an 11th order WENO scheme. Furthermore, use of an 11th order WENO advection scheme actually has a computational cost advantage because, for the same accuracy, it can be used on a coarser grid when compared with a more-common second-order advection scheme; computational savings of up to 87% are possible.  相似文献   

7.
In plunging jet flows and at hydraulic jumps, large quantities of air are entrained at the intersection of the impinging flow and the receiving body of water. The air bubbles are entrained into a turbulent shear layer and strong interactions take place between the air bubble advection/diffusion process and the momentum shear region. New air-water flow experiments were conducted with two free shear layer flows: a vertical supported jet and a horizontal hydraulic jump. The inflows were partially developed boundary layers, characterized by the presence of a velocity potential core next to the entrapment point. In both cases, the distributions of air concentration exhibit a Gaussian distribution profile with an exponential longitudinal decay of the maximum air content. Interestingly, the location of the maximum air content and the half-value band width are identical for both flow situations, i.e. independent of buoyancy effects.  相似文献   

8.
The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice.  相似文献   

9.
10.
11.
During the collapse of a bubble near a surface, a high-speed liquid jet often forms and subsequently impacts upon the opposite bubble surface. The jet impact transforms the originally singly-connected bubble to a toroidal bubble, and generates circulation in the flow around it. A toroidal bubble simulation is presented by introducing a vortex ring seeded inside the bubble torus to account for the circulation. The velocity potential is then decomposed into the potential of the vortex ring and a remnant potential. Because the remnant potential is continuous and satisfies the Laplace equation, it can be modelled by the boundary-integral method, and this circumvents an explicit domain cut and associated numerical treatment. The method is applied to study the collapse of gas bubbles in the vicinity of a rigid wall. Good agreement is found with the results of Best (J. Fluid Mech. 251 79–107, 1993), obtained by a domain cut method. Examination of the pressure impulse on the wall during jet impact indicates that the high-speed liquid jet has a significant potential for causing damage to a surface. There appears to be an optimal initial distance where the liquid jet is most damaging.  相似文献   

12.
Measurements have been obtained, by laser-Doppler anemometry (LDA), of the axisymetric, recirculating liquid flow caused by a column of air bubbles (5–612mm dia.) rising through caster oil in a cylindrical enclosure (100 mm dia.). The liquid velocities correspond to creeping flow. Axial and radial liquid velocity profiles are reported at eight axial stations and, close to within the bubble column, as a function of time. The maximum liquid velocity found outside the bubble column is about 0.5 of that of the bubbles and a very rapid radical decay from this value is noted. The temporal variation of the velocity field, due to the passage of the air bubbles, is undetectable at radial locations greater than about 112 bubble radii from the centreline.The variation of bubble velocity with axial distance was aise measured by LDA for liquid height to enclosure diámeter ratios of 0.98 and 2.78. The maximum bubble velocities were about 0.1–0.2 higher than the Strokes law terminal velocity. The increase is due to the convection of the bubble column by the liquid flow. The maximum bubble velocity is established within approximately three bubble diameters of the air inlet.The motion of the liquid has been calculated by the numerical solution of the steady form of the equations of motion, with the inner boundary of the area of integration lying 1.3 bubble radii from the centerline. The boundary conditions at this surface are assumed to be steady and are taken from measurements of the time-averaged velocity components. The assumption of steady flow at this boundary is supported by experimental observation and results in calculations which are generally in close agreement with the measurements. Discrepancies are confined to the immediate vicinity of the bubble column near to the top and bottom of the enclosure. These are ascribed to a combination of small asymmetries in the experiment and inadequate numerical resolution in these regions.  相似文献   

13.
利用非线性动力学软件LS-DYNA,对聚能射流平行入射大气/钢靶板交界处的侵彻过程进行了数值模拟.通过分析数值模拟过程和结果,讨论了聚能射流头部速度和碰撞出口处横向速度的变化规律.结果表明:大气/钢靶板交界处不仅降低了聚能射流头部的轴向速度,而且使射流头部产生横向偏移,最大速度达到约1.8 km/s;后续射流横向偏移速...  相似文献   

14.
A coupled level set and volume-of-fluid (CLSVOF) method is implemented for the numerical simulations of interfacial flows in ship hydrodynamics. The interface is reconstructed via a piecewise linear interface construction scheme and is advected using a Lagrangian method with a second-order Runge–Kutta scheme for time integration. The level set function is re-distanced based on the reconstructed interface with an efficient re-distance algorithm. This level set re-distance algorithm significantly simplifies the complicated geometric procedure and is especially efficient for three-dimensional (3D) cases. The CLSVOF scheme is incorporated into CFDShip-Iowa version 6, a sharp interface Cartesian grid solver for two-phase incompressible flows with the interface represented by the level set method and the interface jump conditions handled using a ghost fluid methodology. The performance of the CLSVOF method is first evaluated through the numerical benchmark tests with prescribed velocity fields, which shows superior mass conservation property over the level set method. With combination of the flow solver, a gas bubble rising in a viscous liquid and a water drop impact onto a deep water pool are modeled. The computed results are compared with the available numerical and experimental results, and good agreement is obtained. Wave breaking of a steep Stokes wave is also modeled and the results are very close to the available numerical results. Finally, plunging wave breaking over a submerged bump is simulated. The overall wave breaking process and major events are identified from the wave profiles of the simulations, which are qualitatively validated by the complementary experimental data. The flow structures are also compared with the experimental data, and similar flow trends have been observed.  相似文献   

15.
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved.  相似文献   

16.
环形喷管喷口气泡演化的实验研究   总被引:2,自引:0,他引:2  
水下气泡的发展演化及气泡动力学行为是气液两相动力学的基础理论与水下射流应用的重要基础. 环形喷管/喷口形成的气泡及气体射流具有其不同于圆孔实心射流的特殊表现与规律机制,随着同心筒破水发射等特殊应用的出现,环形喷口气体射流/泡流的基础现象观测和机制分析成为迫切的需求. 基于环形喷管的设计和水下射流条件的分析,设计建立了一套环形喷管水箱实验系统,对水下环形喷管喷口气泡发展演化过程进行了初步的实验研究. 为观测研究气体通过环形喷管气泡生长发展过程,在较低压力、较低流速下,采用高速摄影仪记录气泡生长及发展演化过程. 结合对气泡发展演化过程的图像处理与分析,研究分析了环形喷口气泡形成区制、气泡生长过程形态发展特点、以及气泡形成时间及气泡体积变化特点. 研究表明:在本实验气体流量范围内(50.8~237.3 dm3/min),环形喷口气泡发展演化过程呈现较为明显的三周期区制,前泡尾流影响是环形气泡呈三周期区制的主要原因;不同周期内的气泡形成时间具有较稳定规律,并受到流量影响;气泡生长过程中有较为明显的下沉、回升特征;气泡表面张力、液体惯性与流动的共同作用,造成了典型的气泡顶部坍塌现象.   相似文献   

17.
The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier–Stokes equations in air and water. The interface tracking is achieved by a Lax–Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).  相似文献   

18.
三维气泡与自由表面相互作用的直接数值模拟   总被引:2,自引:0,他引:2  
采用VOF中的PLIC界面重构方法数值模拟了三维气泡在液流中上升并与自由表面相互作用的运动.分别考察了不同初始高度,有无来流及有无再生气泡对气泡上升高度、上升速度、压力及与自由表面相互作用等的影响.结果表明:气泡初始位置越低,顶端上升的高度越大,自由面隆起的范围更广.越靠近自由表面,底部射流横向发展越窄,而向上的压力梯度,气泡上升速度,底部射流上升高度越大,反之则反;但如果底部射流均在接近自由表面以前已横向发展充分,则差别不大.气泡外形、上升高度、破裂时间以及上升速度与来流无关.产生再生气泡后,原生气泡与再生气泡相吸,相互加速对方的上升;自由表面抬升的高度增幅较大,范围拓宽,上升速度也大大增加,且再生气泡越多,自由表面隆起的范围越大.  相似文献   

19.
Direct numerical simulations (DNS) are performed to study the behavior of a swarm of rising air bubbles in water, employing the front tracking method, which allows to handle finite-size bubbles. The swarms consist of monodisperse deformable 4 mm bubbles with a gas fraction of 5% and 15%. This paper focuses on the comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs) with experimental data obtained by phase-sensitive constant-temperature anemometry (CTA) and three-dimensional particle tracking velocimetry (PTV), respectively.  相似文献   

20.
The velocity, temperature and velocity fluctuation distributions within falling spindle oil films in an inclined rectangular channel were measured using hot-wire techniques and thin thermocouples. The interfacial shear was caused by cocurrent air flow.The results indicate that the liquid films are as a whole much more laminar-like than turbulent in a range of Reynolds numbers (4γ/μ) up to the experimental limit of 6000. Mixing motion occurs in the vicinity of the interface; however, the flow near the wall surface exhibits no sign of such eddy motions, as predicted by the wall law for single phase turbulent flow. Although velocity fluctuation is observed within films with interfacial shear, mean velocity profiles are approximately the same as those obtained by the laminar film prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号