首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large Eddy Simulations (LES) are carried out to investigate on the mean flow in turbulent channel flows over irregular rough surfaces. Here the attention is focused to selectively investigate on the effect induced by crests or cavities of the roughness. The irregular shape is generated through the super-imposition of sinusoidal functions having random amplitude and four different wave-lengths. The irregular roughness profile is reproduced along the spanwise direction in order to obtain a 2D rough shape. The analysis of the mean velocity profiles shows that roughness crests induce higher effect in the outer-region whereas roughness cavities cause the highest effects in the inner-region with a reduced effect in the external region. The numerical simulations have been carried out at friction Reynolds number Reτ=395. Similar results have been found for the higher order statistics: turbulence intensities or shear stresses. The analysis of the Reynolds stress anisotropy tensor confirms the existence of specific roles of cavities and crests in the turbulence modulation.  相似文献   

2.
To simulate turbulent flow over a rough wall without resolving complicated rough geometries, a macroscopic rough wall model is developed based on spatial (plane) averaging theory. The plane-averaged drag force term, which arises through averaging the Navier–Stokes equations in a plane parallel to a rough wall, can be modeled using a plane porosity and a plane hydraulic diameter. To evaluate the developed model, direct and macroscopic model simulations for turbulence over irregularly distributed semi-spheres at Reynolds number of 300 are carried out using the D3Q27 multiple-relaxation time lattice Boltzmann method. The results show that the developed model can be used to predict rough wall skin friction. The results agree quantitatively with standard turbulence statistics such as mean velocity and Reynolds stress profiles with the fully resolved DNS data. Since velocity dispersion occurs inside the rough wall and is found to contribute to turbulence energy dissipation, which the developed model cannot account for, the developed model fails to reproduce dispersion-related turbulence energy dissipation. However, it is found that the plane-averaged drag force term can successfully recover the deficiency of dispersion-related turbulence energy dissipation.  相似文献   

3.
Rough surfaces are common on high-speed vehicles, for example on heat shields, but compressibility is not usually taken into account in the flow modelling other than through the mean density. In the present study, supersonic fully-developed turbulent rough wall channel flows are simulated using direct numerical simulation to investigate whether strong compressibility effects significantly alter the mean flow and turbulence properties across the channel. The simulations were run for three different Mach numbers M = 0.3, 1.5 and 3.0 over a range of wall amplitude-to-wavelength ratios from 0.01 to 0.08, corresponding to transitionally and fully rough cases respectively. The velocity deficit values are found to decrease with increasing Mach number. It is also found that at Mach 3.0 significant differences occur in the mean flow and turbulence statistics throughout the channel and not just in a roughness sublayer. These differences are found to be due to the presence of strong shock waves created by the peaks of the roughness elements.  相似文献   

4.
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

5.
刘宁 《力学学报》2011,43(1):24-31
本文用大涡模拟预测了以不同转速做展向旋转的槽道湍流流动,统计平均的流向速度型在壁面附近与已有实验数据符合很好,在通道中部的预测差异也能给出合理解释,对比不同转速的计算结果,表明展向旋转通道的湍流应力和壁面摩擦力在压力面附近提高、在吸力面附近降低,这些高阶湍流统计量的变化规律可以结合湍流应力输运方程加以解释,漩涡识别技术显示了近壁条带结构,其形态和猝发率受旋转附加力的影响发生改变,进而影响壁面摩擦速度的数值和分布,进一步考察垂直流动方向的截面内速度分布,发现旋转引起了垂直壁面方向的流动,形成正负相间排列的流向涡对,并随着转速的增加向压力面靠近。   相似文献   

6.
Two dimensional time accurate PIV measurements of the flow between pressure and suction side at different spanwise positions of a rotating channel are presented. The Reynolds and Rotation numbers are representative for the flow in radial impellers of micro gas turbines. Superposition of the 2D results at the different spanwise positions provides a quasi-3D view of the flow and illustrates the impact of Coriolis forces on the 3D flow structure. It is shown that the inlet flow is little affected by rotation. An increasing/decreasing boundary layer thickness is reported on the suction/pressure side wall halfway between the channel inlet and outlet. The turbulence intensity moves away from the suction side wall and remains close to the pressure side wall. The instantaneous measurements at mid-height of the rotating channel reveal the presence of hairpin vortices in the pressure side boundary layer and symmetric vortices near the suction side. Hairpin vortices occur in rotation in the pressure and in the suction side, for the measurement plane close to the channel bottom wall.  相似文献   

7.
The flow of water in a straight compound channel with prismatic cross section is investigated with a relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses, the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the large eddy simulation is performed. The results of numerical simulations are compared with the available experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence in compound channels and is sufficiently accurate for practical applications in engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Computational fluid dynamics simulations employing eddy-viscosity turbulence models remain the baseline numerical tool in the aerospace industry, mainly due to their numerical stability and computational efficiency. However, many industrially relevant cases require a level of accuracy that is not routinely achieved by global turbulence models. The simulation of leading-edge vortices shed at low aspect ratio wings is one such class of flows that remains a challenge for turbulence modelling. A local approach is proposed in which a parametrised eddy-viscosity turbulence model is calibrated using experimental results of configurations and flow conditions similar to the one being analysed. In this paper, the Spalart–Allmaras one-equation model is enhanced with additional source terms, which are exclusively active in the vortex field. An automatic optimisation procedure with experimental data as reference is then applied. The resulting optimised model improves the eddy viscosity distribution for a limited but relevant range of configurations and flow conditions.  相似文献   

9.
Two-fluid flow is examined analytically and numerically for increased flow rates through a channel with surface roughness or branching or both. The viscosity and density ratios of the fluids are of order unity. There is much concern in terms of applications as well as fluid dynamical phenomena in configurations where one fluid is present only as a thin layer near an outer wall, leaving the other fluid occupying the channel core and part of a viscous wall layer. The interactive dynamics in both regions is studied and numerical and asymptotic analyses are performed. The major situations examined are: the flow to two symmetrically bifurcating daughters and the flow in a single channel over a rough wall, as well as a combination of the two situations. The principal phenomena of interest are conditions for flow reversal, the presence of upstream influence and the trajectories of the injected fluid as the density or viscosity ratio varies. Special relatively thin or thinning wall layers are produced when the core fluid viscosity increases or when the fluid travels downstream into a daughter vessel.  相似文献   

10.
The Elliptic Blending Reynolds Stress Model (EB-RSM), originally proposed by Manceau and Hanjalić (2002) to extend standard, weakly inhomogeneous Reynolds stress models to the near-wall region, has been subject to various modifications by several authors during the last decade, mainly for numerical robustness reasons. The present work revisits all these modifications from the theoretical standpoint and investigates in detail their influence on the reproduction of the physical mechanisms at the origin of the influence of the wall on turbulence. The analysis exploits recent DNS databases for high-Reynolds number channel flows, spanwise rotating channel flows with strong rotation rates, up to complete laminarization, and the separated flow after a sudden expansion without and with system rotation. Theoretical arguments and comparison with DNS results lead to the selection of a recommended formulation for the EB-RSM model. This formulation shows satisfactory predictions for the configurations described above, in particular as regards the modification of the mean flow and turbulent anisotropy on the anticyclonic or pressure side.  相似文献   

11.
In the present study, we propose a wall friction modeling in a vertical upward bubbly flow under the assumptions of bidimensional stationary and fully developed flow. This approach is based on the two-fluid model and on the hypothesis that the averaged flow is parallel to the wall. The turbulence modeling is an essential part in this model. Comparison with experimental data (presently available) exhibits satisfactory agreement. Other experimental studies, especially at a high void fraction, are desirable to examine further the model validity.  相似文献   

12.
Turbulent drag reduction by spanwise wall oscillations   总被引:1,自引:0,他引:1  
In the present work a technique is numerically investigated, which is aimed at reducing the friction drag in turbulent boundary layers and channel flows. A cyclic spanwise oscillation of the wall with a proper frequency and amplitude is imposed, allowing a reduction of the turbulent drag of up to 40%. The present work is based on the numerical simulation of the Navier-Stokes equations in the simple geometry of a plane channel flow. The frequency of the oscillations is kept fixed at the most efficient value determined in previous studies, while the choice of the best value for the amplitude of the oscillations is evaluated not only in terms of friction reduction, but also by taking into consideration the overall energy balance and the power spent for the motion of the wall. The analysis of turbulence statistics allows to shed some light on the way oscillations interact with wall turbulence, as illustrated by visual inspection of some instantaneous flow fields. Finally, a simple explanation is proposed for this interaction, which leads to a rough estimate of the most efficient value for the frequency of the oscillations.  相似文献   

13.
We performed direct simulations of channel flow subjected to rotation about a spanwise axis, comparing cases with smooth and rough walls. The destabilizing effect of roughness counteracts the stabilizing effect of rotation on the cyclonic (stable) side. When the surface is rough the Reynolds stresses remain significant at all rotation rates considered, even those that results in a quasi-laminar state when the wall is smooth. The wake fluctuations result in significant dispersive stresses, which give an important contribution to the generation of turbulence on the stable side, mainly through added production of shear stresses. The dispersive stresses are mostly associated with the channeling of the flow between roughness elements.  相似文献   

14.
In a stepped channel operating with large flow rates, the flow skims over the pseudo-bottom formed by the step edges as a coherent stream. Intense three-dimensional recirculation is maintained by shear stress transmission from the mainstream to the step cavities, while significant free-surface aeration takes place. The interactions between free-surface aeration and cavity recirculation are investigated herein with seven step cavity configurations. The experiments were conducted in a large stepped channel operating at large Reynolds numbers. For some experiments, triangular vanes, or longitudinal ribs, were placed across the step cavities to manipulate the flow turbulence to enhance the interactions between the mainstream flow and the cavity recirculation region. The results showed a strong influence of the vanes on the air–water flow properties in both free-stream and cavity flows. The findings demonstrate some passive turbulence manipulation in highly turbulent air–water flows.  相似文献   

15.
Generalized Lattice Boltzmann equation (GLBE) was used for computation of turbulent channel flow for which large eddy simulation (LES) was employed as a turbulence model. The subgrid‐scale turbulence effects were simulated through a shear‐improved Smagorinsky model (SISM), which is capable of predicting turbulent near wall region accurately without any wall function. Computations were done for a relatively coarse grid with shear Reynolds number of 180 in a parallelized code. Good numerical stability was observed for this computational framework. The results of mean velocity distribution across the channel showed good correspondence with direct numerical simulation (DNS) data. Negligible discrepancies were observed between the present computations and those reported from DNS for the computed turbulent statistics. Three‐dimensional instantaneous vorticity contours showed complex vortical structures that appeared in such flow geometries. It was concluded that such a framework is capable of predicting accurate results for turbulent channel flow without adding significant complications and the computational cost to the standard Smagorinsky model. As this modeling was entirely local in space it was therefore adapted for parallelization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
采用动态亚格子模式和浸没边界法,对宽浅槽道中的丁坝群绕流的水动力学特性进行了三维大涡模拟研究. 利用丁坝绕流,试验中采用粒子图像测速仪(particle image velocimetry, PIV)测量的试验中自由水面处的时间平均流速和湍动强度数据对模型进行率定,结果表明计算结果与试验数据吻合良好. 丁坝长度与丁坝之间距离的比值L/D对丁坝周围的水流流动形式、湍流强度、涡量分布有显著影响. 在L保持不变并且L/D较大时,丁坝之间的距离D较小,这限制了混合层的发展,因此混合层中的湍动强度和涡量都较小;同时丁坝之间的回流区的流线形式也发生明显变化. 此外,还给出了涡体在丁坝坝头附近产生,发展并向下游输运的动态过程.  相似文献   

17.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Reynolds averaged simulation of flow and heat transfer in ribbed ducts   总被引:6,自引:0,他引:6  
The accuracy of modern eddy-viscosity type turbulence models in predicting turbulent flows and heat transfer in complex passages is investigated. The particular geometries of interest here are those related to turbine blade cooling systems. This paper presents numerical data from the calculation of the turbulent flow field and heat transfer in two-dimensional (2D) cavities and three-dimensional (3D) ribbed ducts. It is found that heat transfer predictions obtained using the v2f turbulence model for the 2D cavity are in good agreement with experimental data. However, there is only fair agreement with experimental data for the 3D ribbed duct. On the wall of the duct where ribs exist, predicted heat transfer agrees well with experimental data for all configurations (different streamwise rib spacing and the cavity depth) considered in this paper. But heat transfer predictions on the smooth-side wall do not concur with the experimental data. Evidence is provided that this is mainly due to the presence of strong secondary flow structures which might not be properly simulated with turbulence models based on eddy viscosity.  相似文献   

20.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号