首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native cellulose nanofibrils (CNF) were prepared from bleached birch pulp without any chemical or enzymatic pretreatment. These CNF were modified by adsorption of a small amount of water-soluble polysaccharides and used to prepare nanopapers, which were processed into composites by lamination with an epoxy resin and subsequently cured. The results were compared to the properties of composites prepared using bacterial cellulose nanopapers, since bacterial cellulose constitutes highly pure and crystalline cellulose. It was found that both types of nanopapers significantly improved both the thermal stability and mechanical properties of the epoxy resin. As anticipated, addition of only 2 wt% of water-soluble polysaccharides efficiently hindered crack-propagation within the nanopaper and significantly improved the tensile strength and work of fracture compared to composites containing a conventional nanopaper reinforcement. The mechanical properties of the composites thus reflected the improvement of the nanopaper properties by the polysaccharides. Moreover, it was possible to predict the properties of the final composite from the mechanical performance of the nanopapers.  相似文献   

2.
A new method is presented for functionalizing electrospun nanofibers with GAGs and growth factors by PEM deposition. Electrospun chitosan nanofibers, spun from trifluoroacetic acid and dichloromethane, were coated with PEMs, using the polysaccharides heparin and N,N,N-trimethyl chitosan. FGF-2 was adsorbed on the PEM-coated nanofibers. Nanofiber neutralization, PEM construction, and FGF-2 adsorption were monitored using FT-IR spectroscopy and X-ray photoelectron spectroscopy. Alcian blue staining was used to confirm the presence of heparin. SEM was used to study nanofiber morphology.  相似文献   

3.
利用多糖与金属离子复合制备了一种高效的蛋白质吸附剂.海藻酸钠和羧甲基纤维素钠是两种富含羟基和羧基的多糖, 具有较强的金属亲和性.将其用钙离子交联后制备成金属-多糖复合材料, 进一步修饰铜离子, 得到蛋白质吸附剂.吸附剂对富含组氨酸的牛血红蛋白的吸附量可以达到33 g/g, 对少量组氨酸的牛血清白蛋白的吸附量也可以达到9.8 g/g.蛋白质吸附剂对人血血清进行两次吸附后, 可以去除其中98%的蛋白, 能够满足人血血清中核苷类物质的直接色谱进样检测.  相似文献   

4.
Interactions among cellulose, hemicellulose and pectins are important for plant cell wall assembly and properties and also for industrial applications of these polysaccharides. Therefore, binding of pectin and xyloglucan on microcrystalline cellulose was investigated in this experiment by adsorption isotherms, zeta potential and scanning electron microscopy (SEM). Analysis of three isotherm models (Langmuir, Freundlich and Fowler-Guggenheim isotherms) showed that the experimental adsorption isotherm was well described via the Fowler-Guggenheim model, which includes lateral interaction between the adsorbate. The adsorption isotherm and zeta potential measurement showed that at temperature 25 °C only xyloglucan adsorbed on the microcrystalline cellulose. In case of xyloglucan on cellulose, the equilibrium was reached in about 3–4 h, and the kinetics of adsorption were well described by the multiexponential equation. Analysis of the model suggests that two steps can be distinguished: diffusion and reconformation in an adsorbed layer. No adsorption of pectin was observed in this study. SEM study showed that xyloglucan may prevent cellulose from aggregation.  相似文献   

5.
A biocompatible interface was constructed on a microchip by using the layer-by-layer (LBL) assembly of charged polysaccharides incorporating proteases for highly efficient proteolysis. The controlled assembly of natural polyelectrolytes and the enzyme-adsorption step were monitored by using a quartz-crystal microbalance and atomic force microscopy (AFM). Such a multilayer-assembled membrane provides a biocompatible interconnected network with high enzyme-loading capacity. The maximum digestion rate of the adsorbed trypsin in a microchannel was significantly accelerated to 1600 mM min(-1) microg(-1), compared with the tryptic digestion in solution. Based on the Langmuir isotherm model, the thermodynamic constant of adsorption K was calculated to be 1.6 x 10(5) M(-1) and the maximum adsorption loading Gammamax was 3.6 x 10(-6) mol m(-2), 30 times more than a monolayer of trypsin on the native surface. The tunable interface containing trypsin was employed to construct a microchip reactor for digestion of femtomoles of proteins and the produced peptides were analyzed by MALDI-TOF mass spectroscopy. The efficient on-chip proteolysis was obtained within a few seconds, and the identification of biological samples was feasible.  相似文献   

6.
Solvent‐dependent ultraviolet–visible (UV–vis) absorption and Stokes shifts including strong hydrogen‐bond‐donating (HBD) solvents such as 2,2,2‐trifluoroethanol and 1,1,1,3,3,3‐hexafluoro‐2‐propanol of two coumarine dyes (Co 151 and Co 153) were analyzed with multiple‐square analyses of linear solvation energy relationships and the Kamlet–Taft solvent parameter set to α (HBD capacity), β (hydrogen‐bond‐accepting capacity), and π* (dipolarity/polarizability). The UV–vis absorption and emission spectra of Co 151 and Co 153 were measured when adsorbed on various polysaccharides such as different cellulose batches, carboxymethylcelluloses with different degrees of substitution, and chitine. As a result of this evaluation, Co 153 is recommended as an alternative UV–vis probe for evaluating the dipolarity/polarizability of cellulose and cellulose derivates. Multiple adsorption of Co 153 on Linters cellulose took place indicating a wide‐surface polarity distribution, which makes the determination of a rigid polarity parameter questionable. Thus, fluorescence measurements of adsorbed Co 153 are suitable to detect inhomogenities on a surface but not for the determination of empirical polarity parameters. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1210–1218, 2003  相似文献   

7.
Abstract

Electrostatically layered aluminosilicate nanocomposites have been prepared by the sequential deposition of poly(allylamine hydrochloride)/poly(acrylic acid)/poly(allylamine hydrochloride)/saponite (PAH/PAA/PAH/saponite)10 on poly(ethylene terephtalate) (PET) film. Exfoliated saponite nanoplatelets were obtained by extensive shaking, sonication, and centrifugation of a water suspension. To minimize permeability and improve the mechanical integrity, cross‐linking of composite films was carried out at different temperatures. The formation of amide linkage induced through heating was observed by Fourier Transform Infrared (FT‐IR) and x‐ray photoelectron spectroscopy (XPS). The cross‐linking of nanocomposites (PAH/PAA/PAH/saponite)10 showed 60% decrease in permeability of oxygen when compared with the pristine PET substrate film. In contrast, water permeability of the nanocomposite membrane was not affected by heating temperature and deposition cycles.  相似文献   

8.
Anti‐cancer drug daunorubicin (DNR) was encapsulated in preformed multilayer microcapsules and was applied in tumor treatment by in vitro cell culture and in vivo animal experiments. The microcapsules were fabricated by an alternate deposition of oppositely charged polysaccharides, i.e. chitosan and alginate onto carboxymethyl cellulose (CMC) doped CaCO3 colloidal particles in a sequential assembly procedure, followed by crosslinking of the capsule shells with glutaraldehyde (GA) and removal of the templates by disodium ethylenediaminetetraacetic acid (EDTA). The as‐prepared microcapsules showed strong ability to induce the positively charged DNR to deposit into the microcapsule interiors. Confocal microscopy and transmission electron microscopy observed homogeneous distribution of the drug within microcapsules. The loaded DNR could be released again, following a diffusion‐controlled model at the initial stage. In vitro experiments demonstrated that the encapsulated DNR can effectively induce the apoptosis of BEL‐7402 tumor cells, as evidenced by various microscopy techniques after acridine orange (AO), Hoechst 33342, and osmium tetraoxide staining. By seeding the BEL‐7402 hepatoma cells into BALB/c/nu mice, tumors were created for the animal experiments. The results showed that the encapsulated DNR had better efficacy than that of the free drug in terms of tumor inhibition in a 4 week in vivo culture period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The adsorption of cellulose acetate (CA), cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from solutions prepared in acetone onto silicon wafers led to ultrathin films, which were characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The polysaccharides films were characterized in the air just after their formation and after annealing at temperatures higher than their glass transition temperature or melt temperature. The films thickness close to 2 nm and surface roughness did not vary significantly upon annealing. AFM images revealed the presence of small clumps dispersed on a homogeneous layer, which covered completely the Si wafers. Such topographic details were also observed after annealing. However, upon annealing the films surfaces changed from hydrophilic to hydrophobic, evidencing molecular re-orientation at the solid–air interface. The adhesion of bovine serum albumin (BSA) and lipase onto the cellulose esters films was quantified in order to evaluate the possibility of applying such films as selective support for biomolecules.  相似文献   

10.
To develop new hemopurification systems based on cellulose membrane, we synthesized a graft copolymer of cellulose with poly(2‐methacryloyloxyethyl phosphorylcholine) (MPC) by a metal‐catalyzed atom transfer radical polymerization process in homogeneous media. First, cellulose was dissolved in a DMAc/LiCl solution system, and it reacted with 2‐bromoisobutyloyl bromide to produce macroinitiator (cell‐BiB). Then, MPC was polymerized to the cellulose backbone in a homogeneous DMSO/methanol mixture solution in the presence of cell‐BiB. Characterization with FT‐IR, NMR, and GPC measurements showed that there obtained a graft copolymer of cellulose backbone and poly(MPC) side chains (cell‐PMPC) with well‐defined structure, indicating a controlled/“living” radical polymerization. The proteins adsorption studies showed that cellulose membranes modified by the as‐prepared cell‐PMPC owns good protein adsorption resistance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3306–3313, 2008  相似文献   

11.
Rod-like cellulose nanowhiskers and spherical cellulose nanoparticles were prepared from wood-pulp-derived cellulose powder by mechanical refining processes such as high-pressure homogenization (HPH) and ball-milling (BM). The nanowhiskers obtained by the HPH method were found to be 200–500 nm long and 11–16 nm wide. The diameters of the nanoparticles were in the range 40–200 nm, depending on the BM time, and were reduced to 25–50 nm after extra HPH. By adjusting the BM time, cellulose nanoparticles having different polymorphs with similar morphologies were prepared. The X-ray diffraction patterns revealed the recrystallization of cellulose I (1 h of BM time) or cellulose II (4–8 h of BM time) in ball-milled nanoparticles after water washing and solvent exchange treatments. The nanowhisker widths derived from the specific surface areas (SSA) by adsorption methods such as Congo red dye, nitrogen, and water vapor, sorptions were in agreement with those obtained from transmission electron microscopy and atomic force microscopy images. Similar SSA values were obtained for micro- and nano-scale cellulose materials using water vapor adsorption methods, and the SSAs of nanoparticles obtained by different adsorption methods are also discussed.  相似文献   

12.
利用甘蔗渣提取纤维素修饰环糊精聚合物,成功制备可再生纤维素/环糊精聚合物(SUG-EPI-CDP)吸附剂。采用傅利叶红外光谱仪(FT-IR)与热重分析仪(TGA)对材料进行表征,同时考察了该材料对水中亚甲基蓝(MB)吸附特性和机理的影响。结果表明:在溶液pH值为7、温度为30 ℃的条件下,SUG-EPI-CDP可在120 min内有效去除MB,去除率达80.9%。通过模型拟合发现,SUG-EPI-CDP对MB的吸附是自发且吸热的过程,符合准二阶动力学方程和Langmuir等温线模型。该吸附剂实验最大吸附量达8.1 mg/g,远高于其他废料所制备的吸附剂。结果表明,利用可再生纤维素修饰可有效提高环糊精聚合物的吸附性能,同时为甘蔗渣资源化利用提供了新途径。  相似文献   

13.
Hemodialysis membranes were characterized by means of streaming potential measurements. By variation of the concentrations of different ionic species in the measuring solutions surface potential determining processes can be distinguished: The investigated materials (cellulose derivates) yield surface charges mainly from preferred adsorption of ions. A thermodynamic model of the electrochemical double layer according to STERN (1) was applied to quantify that processes; the resulting set of parameters provide a conjunction between chemical surface properties and the observed interfacial charging processes. Streaming potential measurements can be used for the in situ characterization of the adsorption of biologically relevant molecules like proteins and polysaccharides onto membrane materials. The results given here show the alteration of interfacial properties of different cellulosic membranes through adsorption of human serum albumin and fibrinogen in single, sequential and competitive adsorption.  相似文献   

14.
Tannin was crosslinked with paraformaldehyde to prepare tannin-phenolic polymer(TP), TP immobilized on cellulose (TPPC) was prepared by the cross-linking reaction of TP and cellulose with epichlorohydrin as crosslinking agent. Tannin was crosslinked prior to being immobilized on cellulose, which could increase the effective phenolic hydroxyl content in cellulose skeleton and improve the adsorption property of TPPC for metal ions. The maximum adsorption capacity of TPPC for Cd(II) and Cu(II) ions were 80.11?mg/g and 55.97?mg/g, respectively. The adsorption equilibrium data for the metal solutions fitted the Langmuir model well. The adsorption rate data fitted well to a Pseudo-second-order model. The TPPC has potential application value in the field of metal wastewater treatment.  相似文献   

15.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

16.
Microcrystalline cellulose (MCC) granules were prepared by wet granulation using a high-shear mixer. Physical characteristics of the granules were investigated using near IR spectrometry, thermogravimetry and isothermal water vapor adsorption. Near IR spectra of dried MCC granules prepared for various granulation times exhibited different peak intensities at 1428, 1772, and 1920 nm, which were assigned to functional groups of cellulose or water. On isothermogravimetric analysis, the rate of dehydration of water was shown to decrease with granulation time. These results suggest that the physical structure of MCC could change during the granulation process, and the interaction between MCC and water was gradually strengthened. The isothermal water vapor adsorption curves suggested that the amorphous region of MCC would be divided by the strong shear force of the impeller, because the high adsorption ability of intact MCC in the low humidity region was diminished in granules collected following 5 and 10 min of granulation. It was suggested that MCC formed a network which caught water within its structure during the wet granulation process.  相似文献   

17.
This article focuses on why and how the chemical synthesis of cellulose was accomplished. The synthesis of cellulose was an important, challenging problem for half a century in polymer chemistry. For the synthesis, a new method of enzymatic polymerization was developed. A monomer of β‐D ‐cellobiosyl fluoride (β‐CF) was designed and subjected to cellulase catalysis, which led to synthetic cellulose for the first time. Cellulase is a hydrolysis enzyme of cellulose; cellulase, inherently catalyzing the bond cleavage of cellulose in vivo, catalyzes the bond formation via the polycondensation of β‐CF in vitro. It is thought that the polymerization and hydrolysis involve a common intermediate (transition state). This view led us to a new concept, a transition‐state analogue substrate, for the design of the monomer. The preparation of cellulase proteins with biotechnology revealed the enzymatic catalytic functions in the hydrolysis and polymerization to cellulose. High‐order molecular structures were in situ formed and observed as fibrils (cellulose I) and spherulites (cellulose II). In situ small‐angle neutron scattering measurements suggested a fractal surface formation of a synthetic cellulose assembly. The principle of cellulose synthesis was extended to the synthesis of other natural polysaccharides, such as xylan and amylose, and unnatural polysaccharides. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 693–710, 2005  相似文献   

18.
In this work, the adsorption of cationic surfactant and organic solutes on oxidized cellulose fibers bearing different amounts of carboxylic moieties was investigated. The increase in the amount of -COOH groups on cellulose fibers by TEMPO oxidation induced a general rise in surfactant adsorption. For all tested conditions, that is, cellulose oxidation level and surfactant alkyl chain length (C12 and C16), adsorption isotherms displayed a typical three-region shape with inversion of the substrate zeta-potential which was interpreted as reflecting surfactant adsorption and aggregation (admicelles and hemimicelles) on cellulose fibers. The addition of organic solutes in surfactant/cellulose systems induced a decrease in surfactant cac on the cellulose surface thus favoring surfactant aggregation and the formation of mixed surfactant/solute assemblies. Adsorption isotherms of organic solutes on cellulose in surfactant/cellulose/solute systems showed that solute adsorption is strictly correlated to (i) the surfactant concentration, solute adsorption increases up to the surfactant cmc, where solute partitioning between the cellulose surface and free micelles causes a drop in adsorption, and to (ii) solute solubility and functional groups. The specific shape of solutes adsorption isotherms at a fixed surfactant concentration was interpreted using a Frumkin adsorption isotherm, thus suggesting that solute uptake on cellulose fibers is a coadsorption and not a partitioning process. Results presented in this study were compared with those obtained in a previous work investigating solute adsorption in anionic surfactant/cationized cellulose systems to better understand the role of surfactant/solute interactions in the coadsorption process.  相似文献   

19.
纤维素芳族酯热致液晶对PET结晶成核作用的研究   总被引:3,自引:1,他引:2  
用自制的热致液晶性纤维素芳族酯(CAE)作聚对苯二甲酸乙二醇酯(PET)的成核剂,研究了PET/CAE体系(CAE含量≤1%)在110~200℃温度范围内的等温结晶动力学特性.结果表明,CAE能显著加快PET结晶速率(Z),Z随结晶温度和CAE含量变化均有极大值Zmax(TC)和Zmax(WCAE),Zmax(TC)对应的温度Tmax随CAE含量增加而降低,CAE促进PET结晶的作用机理与普通成核剂不同.  相似文献   

20.
Adsorption isotherms of single and double chain cationic surfactants with different chain length (cetyltrimethyl-, didodecyl- and dihexadecyl ammonium bromide) onto cellulose nanofibrils were determined. Nanofibrillated cellulose, also known as microfibrillated cellulose (MFC), with varying contents of carboxyl groups (different surface charge) was prepared by TEMPO-mediated oxidation followed by mechanical fibrillation. The fibril charge was characterized by potentiometric and conductometric titration. Surfactant adsorption was verified by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Wetting and adhesion of water onto fibril films was determined by contact angle measurements. Small aggregates (admicelles) of surfactant were shown to form on the nanofibril surfaces, well below critical micelle concentrations. The results demonstrate the possibility of using cationic surfactants to systematically control the degree of water wettability of cellulose nanofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号