首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.  相似文献   

2.
The epidemic spread and immunizations in geographically embedded scale-free (SF) and Watts-Strogatz (WS) networks are numerically investigated. We make a realistic assumption that it takes time which we call the detection time, for a vertex to be identified as infected, and implement two different immunization strategies: one is based on connection neighbors (CN) of the infected vertex with the exact information of the network structure utilized and the other is based on spatial neighbors (SN) with only geographical distances taken into account. We find that the decrease of the detection time is crucial for a successful immunization in general. Simulation results show that for both SF networks and WS networks, the SN strategy always performs better than the CN strategy, especially for more heterogeneous SF networks at long detection time. The observation is verified by checking the number of the infected nodes being immunized. We found that in geographical space, the distance preferences in the network construction process and the geographically decaying infection rate are key factors that make the SN immunization strategy outperforms the CN strategy. It indicates that even in the absence of the full knowledge of network connectivity we can still stop the epidemic spread efficiently only by using geographical information as in the SN strategy, which may have potential applications for preventing the real epidemic spread.  相似文献   

3.
In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.  相似文献   

4.
Robustness analysis of static routing on networks   总被引:1,自引:0,他引:1  
Robustness is one of the crucial properties that needs to be considered in the design of routing strategies on networks. We study the robustness of three typical routing strategies, which are the SP (shortest path), EP (efficient path), and OP (optimal path) strategies, by simulating several different kinds of attacks including random attacks, target attacks and cascading failures on scale-free networks. Results of the average path length, betweenness centrality, network capacity, etc., demonstrate that the EP strategy is more robust than the other two, and the OP strategy is more reliable than the SP strategy in general. However, on the power-grid network, the OP strategy is more resistant against cascading failures than the EP and SP strategies.  相似文献   

5.
Xianyu Bo  Jianmei Yang 《Physica A》2010,389(5):1115-4235
This paper studies the evolutionary ultimatum game on networks when agents have incomplete information about the strategies of their neighborhood agents. Our model assumes that agents may initially display low fairness behavior, and therefore, may have to learn and develop their own strategies in this unknown environment. The Genetic Algorithm Learning Classifier System (GALCS) is used in the model as the agent strategy learning rule. Aside from the Watts-Strogatz (WS) small-world network and its variations, the present paper also extends the spatial ultimatum game to the Barabási-Albert (BA) scale-free network. Simulation results show that the fairness level achieved is lower than in situations where agents have complete information about other agents’ strategies. The research results display that fairness behavior will always emerge regardless of the distribution of the initial strategies. If the strategies are randomly distributed on the network, then the long-term agent fairness levels achieved are very close given unchanged learning parameters. Neighborhood size also has little effect on the fairness level attained. The simulation results also imply that WS small-world and BA scale-free networks have different effects on the spatial ultimatum game. In ultimatum game on networks with incomplete information, the WS small-world network and its variations favor the emergence of fairness behavior slightly more than the BA network where agents are heterogeneously structured.  相似文献   

6.
The design of immunization strategies is an extremely important issue for disease or computer virus control and prevention. In this paper, we propose an improved local immunization strategy based on node’s clustering which was seldom considered in the existing immunization strategies. The main aim of the proposed strategy is to iteratively immunize the node which has a high connectivity and a low clustering coefficient. To validate the effectiveness of our strategy, we compare it with two typical local immunization strategies on both real and artificial networks with a high degree of clustering. Simulations on these networks demonstrate that the performance of our strategy is superior to that of two typical strategies. The proposed strategy can be regarded as a compromise between computational complexity and immune effect, which can be widely applied in scale-free networks of high clustering, such as social network, technological networks and so on. In addition, this study provides useful hints for designing optimal immunization strategy for specific network.  相似文献   

7.
We carry out comparative studies of random walks on deterministic Apollonian networks (DANs) and random Apollonian networks (RANs). We perform computer simulations for the mean first-passage time, the average return time, the mean-square displacement, and the network coverage for the unrestricted random walk. The diffusions both on DANs and RANs are proved to be sublinear. The effects of the network structure on the dynamics and the search efficiencies of walks with various strategies are also discussed. Contrary to intuition, it is shown that the self-avoiding random walk, which has been verified as an optimal local search strategy in networks, is not the best strategy for the DANs in the large size limit.  相似文献   

8.
Finding a better immunization strategy   总被引:1,自引:0,他引:1  
The problem of finding the best strategy to immunize a population or a computer network with a minimal number of immunization doses is of current interest. It has been accepted that the targeted strategies on most central nodes are most efficient for model and real networks. We present a newly developed graph-partitioning strategy which requires 5% to 50% fewer immunization doses compared to the targeted strategy and achieves the same degree of immunization of the network. We explicitly demonstrate the effectiveness of our proposed strategy on several model networks and also on real networks.  相似文献   

9.
陈含爽  侯中怀  张季谦  辛厚文 《中国物理 B》2010,19(5):50205-050205
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability $p$ or update their strategies with probability $1-p$ depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of $p$ via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.  相似文献   

10.
We study tolerance and topology of random scale-free networks under attack and defense strategies that depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node depends on its degree or in an intentional attack with insufficient knowledge of the network. We determine, for all strategies, the critical fraction p(c) of nodes that must be removed for disintegrating the network. We find that, for an intentional attack, little knowledge of the well-connected sites is sufficient to strongly reduce p(c). At criticality, the topology of the network depends on the removal strategy, implying that different strategies may lead to different kinds of percolation transitions.  相似文献   

11.
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.  相似文献   

12.
Quantum strategies are introduced into evolutionary games. The agents using quantum strategies are regarded as invaders, whose fraction generally is 1% of a population, in contrast to the 50% of the population that are defectors. In this paper, the evolution of strategies on networks is investigated in a defector-dominated population, when three networks (square lattice, Newman–Watts small-world network, and scale-free network) are constructed and three games (Prisoners’ Dilemma, Snowdrift, and Stag-Hunt) are employed. As far as these three games are concerned, the results show that quantum strategies can always invade the population successfully. Comparing the three networks, we find that the square lattice is most easily invaded by agents that adopt quantum strategies. However, a scale-free network can be invaded by agents adopting quantum strategies only if a hub is occupied by an agent with a quantum strategy or if the fraction of agents with quantum strategies in the population is significant.  相似文献   

13.
We study the possible advantages of adopting quantum strategies in multi-player evolutionary games. We base our study on the three-player Prisoner’s Dilemma (PD) game. In order to model the simultaneous interaction between three agents we use hypergraphs and hypergraph networks. In particular, we study two types of networks: a random network and a SF-like network. The obtained results show that in the case of a three-player game on a hypergraph network, quantum strategies are not necessarily stochastically stable strategies. In some cases, the defection strategy can be as good as a quantum one.  相似文献   

14.
Disasters cause tremendous damage every year. In this paper, we have specifically studied emergency response to disaster-struck scale-free networks when some nodes in the network have redundant systems. If one node collapses, its redundant system will substitute it to work for a period of time. In the first part, according to the network structure, several redundant strategies have been formulated, and then our studies focused on their effectiveness by means of simulation. Results show that the strategy based on total degrees is the most effective one. However, many nodes still collapse in the end if redundant systems do not have sufficient capability, so emergency responses are necessary. Several emergent strategies controlling the distribution of external resources have been proposed in the second part. The effectiveness of those emergent strategies are then studied from three aspects, such as the effect of strategies on spreading processes, minimum sufficient quantities of external resources and determination of the most appropriate emergent strategy. In addition, the effects of redundant intensity on these aspects have been discussed as well.  相似文献   

15.
We propose a strategy updating mechanism based on pursuing the highest average payoff to investigate the prisoner's dilemma game and the snowdrift game. We apply the new rule to investigate cooperative behaviours on regular, small-world, scale-free networks, and find spatial structure can maintain cooperation for the prisoner's dilemma game. fn the snowdrift game, spatial structure can inhibit or promote cooperative behaviour which depends on payoff parameter. We further study cooperative behaviour on scale-free network in detail. Interestingly, non-monotonous behaviours observed on scale-free network with middle-degree individuals have the lowest cooperation level. We also find that large-degree individuals change their strategies more frequently for both games.  相似文献   

16.
Neuronal synchronization plays an important role in the various functionality of nervous system such as binding, cognition, information processing, and computation. In this paper, we investigated how random and intentional failures in the nodes of a network influence its phase synchronization properties. We considered both artificially constructed networks using models such as preferential attachment, Watts-Strogatz, and Erdo?s-Re?nyi as well as a number of real neuronal networks. The failure strategy was either random or intentional based on properties of the nodes such as degree, clustering coefficient, betweenness centrality, and vulnerability. Hindmarsh-Rose model was considered as the mathematical model for the individual neurons, and the phase synchronization of the spike trains was monitored as a function of the percentage∕number of removed nodes. The numerical simulations were supplemented by considering coupled non-identical Kuramoto oscillators. Failures based on the clustering coefficient, i.e., removing the nodes with high values of the clustering coefficient, had the least effect on the spike synchrony in all of the networks. This was followed by errors where the nodes were removed randomly. However, the behavior of the other three attack strategies was not uniform across the networks, and different strategies were the most influential in different network structure.  相似文献   

17.
This paper investigates the adaptation of cooperating strategies in an iterated prisoner's dilemma (IPD) game with individually learning agents, subject to the structure of the interaction network. In particular, we study how cooperation or defection comes to dominate the population on Watts–Strogatz networks, under varying average path lengths. Our results are in good agreement with previous works on discrete choice dynamics on networks, but are in stark contrast with results from the evolution of cooperation literature. We argue that the latter is because the different adaptation method used (i.e., adaptive learning instead of ‘evolutionary’ strategy switching).  相似文献   

18.
Lili Deng  Wansheng Tang  Jianxiong Zhang 《Physica A》2011,390(23-24):4227-4235
In this paper, a model of ultimatum game is discussed from the coevolutionary perspective, where strategy dynamics and structure dynamics coexist. The interplay between structure dynamics and strategy dynamics leads to overwhelmingly interesting evolved topology and fairness behaviors. It is found that fair division emerges for specific ratios of structure updating probability to strategy updating probability. Furthermore, it is shown that the initial structures have no essentially different effect on the coevolutionary results. In particular, the results for strategy are almost similar whenever the initial structure is set to be the nearest-neighbor coupled network, the ER random network or the scale-free network. Besides, the effects of other spatial factors are also investigated, e.g. the population size has a positive influence on the offer, while the average degree has a negative effect. In addition, one extrinsic factor, the background payoff, is also of great importance in promoting fair divisions. Apart from above, we study the properties of the evolved networks, which have the small-world effect and positive assortative behaviors.  相似文献   

19.
In this paper, we introduce a non-uniform tolerance parameter (TP) strategy (the tolerance parameter is characterized by the proportion between the unused capacity and the capacity of a vertex) and study how the non-uniform TP strategy influences the response of scale-free (SF) networks to cascading failures. Different from constant TP in previous work of Motter and Lai (ML), the TP in the proposed strategy scales as a power-law function of vertex degree with an exponent b. The simulations show that under low construction costs D, when b>0 the tolerance of SF networks can be greatly improved, especially at moderate values of b; When b<0 the tolerance gets worse, compared with the case of constant TP in the ML model. While for high D the tolerance declines slightly with the b, namely b<0 is helpful to the tolerance, and b>0 is harmful. Because for smaller b the cascade of the network is mainly induced by failures of most high-degree vertices; while for larger b, the cascade attributes to damage of most low-degree vertices. Furthermore, we find that the non-uniform TP strategy can cause changes of the structure and the load-degree correlation in the network after the cascade. These results might give insights for the design of both network capacity to improve network robustness under limitation of small cost, and for the design of strategies to defend cascading failures of networks.  相似文献   

20.
吴佳键  龚凯  王聪  王磊 《物理学报》2018,67(8):88901-088901
如何有效地应对和控制故障在相依网络上的级联扩散避免系统发生结构性破碎,对于相依网络抗毁性研究具有十分重要的理论价值和现实意义.最新的研究提出一种基于相依网络的恢复模型,该模型的基本思想是通过定义共同边界节点,在每轮恢复阶段找出符合条件的共同边界节点并以一定比例实施恢复.当前的做法是按照随机概率进行选择.这种方法虽然简单直观,却没有考虑现实世界中资源成本的有限性和择优恢复的必然性.为此,针对相依网络的恢复模型,本文利用共同边界节点在极大连通网络内外的连接边数计算边界节点的重要性,提出一种基于相连边的择优恢复算法(preferential recovery based on connectivity link,PRCL)算法.利用渗流理论的随机故障模型,通过ER随机网络和无标度网络构建的不同结构相依网络上的级联仿真结果表明,相比随机方法和度数优先以及局域影响力优先的恢复算法,PRCL算法具备恢复能力强、起效时间早且迭代步数少的优势,能够更有效、更及时地遏制故障在网络间的级联扩散,极大地提高了相依网络遭受随机故障时的恢复能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号