首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This Letter extends our probabilistic framework for two-player quantum games to the multiplayer case, while giving a unified perspective for both classical and quantum games. Considering joint probabilities in the Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting for three observers, we use this setting in order to play general three-player noncooperative symmetric games. We analyze how the peculiar non-factorizable joint probabilities provided by the EPR-Bohm setting can change the outcome of a game, while requiring that the quantum game attains a classical interpretation for factorizable joint probabilities. In this framework, our analysis of the three-player generalized Prisoner's Dilemma (PD) shows that the players can indeed escape from the classical outcome of the game, because of non-factorizable joint probabilities that the EPR setting can provide. This surprising result for three-player PD contrasts strikingly with our earlier result for two-player PD, played in the same framework, in which even non-factorizable joint probabilities do not result in escaping from the classical consequence of the game.  相似文献   

2.
The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].  相似文献   

3.
Quantum strategies are introduced into evolutionary games. The agents using quantum strategies are regarded as invaders, whose fraction generally is 1% of a population, in contrast to the 50% of the population that are defectors. In this paper, the evolution of strategies on networks is investigated in a defector-dominated population, when three networks (square lattice, Newman–Watts small-world network, and scale-free network) are constructed and three games (Prisoners’ Dilemma, Snowdrift, and Stag-Hunt) are employed. As far as these three games are concerned, the results show that quantum strategies can always invade the population successfully. Comparing the three networks, we find that the square lattice is most easily invaded by agents that adopt quantum strategies. However, a scale-free network can be invaded by agents adopting quantum strategies only if a hub is occupied by an agent with a quantum strategy or if the fraction of agents with quantum strategies in the population is significant.  相似文献   

4.

In this work we introduce the concept of a quantum walk on a hypergraph. We show that the staggered quantum walk model is a special case of a quantum walk on a hypergraph.

  相似文献   

5.
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv:1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners’ Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game’s properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.  相似文献   

6.
We propose a strategy updating mechanism based on pursuing the highest average payoff to investigate the prisoner's dilemma game and the snowdrift game. We apply the new rule to investigate cooperative behaviours on regular, small-world, scale-free networks, and find spatial structure can maintain cooperation for the prisoner's dilemma game. fn the snowdrift game, spatial structure can inhibit or promote cooperative behaviour which depends on payoff parameter. We further study cooperative behaviour on scale-free network in detail. Interestingly, non-monotonous behaviours observed on scale-free network with middle-degree individuals have the lowest cooperation level. We also find that large-degree individuals change their strategies more frequently for both games.  相似文献   

7.
Investigating the evolutionary game dynamics in structured populations is challenging due to the complexity of social interactions. There has been a growing interest in evolutionary game on social networks, particularly concerning how a specific network structure affects the evolution of strategies. Here, we consider a social network of interacting individuals playing the anti-coordination games with mixed strategies, and present a deterministic nonlinear equation for the evolution of strategies where the aspiration level is an incentive in the selection of strategies. We find that with an intermediate aspiration level, there exists an evolutionarily-stable mixed-strategy equilibrium if the cost-to-benefit ratio of altruistic is chosen below a threshold, which is determined by the largest Laplacian eigenvalue of the network. We also give extensive numerical simulations on regular and scale-free networks which confirm the validity of our analytical findings.  相似文献   

8.
Generative adversarial networks (GAN) are widely used for fast compressed sensing magnetic resonance imaging (CSMRI) reconstruction. However, most existing methods are difficult to make an effective trade-off between abstract global high-level features and edge features. It easily causes problems, such as significant remaining aliasing artifacts and clearly over-smoothed reconstruction details. To tackle these issues, we propose a novel edge-enhanced dual discriminator generative adversarial network architecture called EDDGAN for CSMRI reconstruction with high quality. In this model, we extract effective edge features by fusing edge information from different depths. Then, leveraging the relationship between abstract global high-level features and edge features, a three-player game is introduced to control the hallucination of details and stabilize the training process. The resulting EDDGAN can offer more focus on edge restoration and de-aliasing. Extensive experimental results demonstrate that our method consistently outperforms state-of-the-art methods and obtains reconstructed images with rich edge details. In addition, our method also shows remarkable generalization, and its time consumption for each 256 × 256 image reconstruction is approximately 8.39 ms.  相似文献   

9.
This paper investigates the adaptation of cooperating strategies in an iterated prisoner's dilemma (IPD) game with individually learning agents, subject to the structure of the interaction network. In particular, we study how cooperation or defection comes to dominate the population on Watts–Strogatz networks, under varying average path lengths. Our results are in good agreement with previous works on discrete choice dynamics on networks, but are in stark contrast with results from the evolution of cooperation literature. We argue that the latter is because the different adaptation method used (i.e., adaptive learning instead of ‘evolutionary’ strategy switching).  相似文献   

10.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nasli equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

11.
X.P. Xu  F. Liu 《Physics letters. A》2008,372(45):6727-6732
We study the coherent exciton transport of continuous-time quantum walks (CTQWs) on Erdös-Rényi networks. We numerically investigate the transition probability between two nodes of the networks, and compare the classical and quantum transport efficiency on networks of different connectivity. In the long time limiting, we find that there is a high probability to find the exciton at the initial node. We also study how the network parameters affect such high return probability.  相似文献   

12.
Leslie Luthi 《Physica A》2008,387(4):955-966
Situations of conflict giving rise to social dilemmas are widespread in society. One way of studying these important phenomena is by using simplified models of individual behavior under conflicting situations such as evolutionary game theory. Starting from the observation that individuals interact through networks of acquaintances, we study the evolution of cooperation on model and real social networks through well known paradigmatic games. Using a new payoff scheme which leaves replicator dynamics invariant, we find that cooperation is sustainable in such networks, even in the difficult case of the prisoner’s dilemma. The evolution and stability of cooperation implies the condensation of game strategies into the existing community structures of the social network in which clusters of cooperators survive thanks to their higher connectivity towards other fellow cooperators.  相似文献   

13.
Xianyu Bo  Jianmei Yang 《Physica A》2010,389(5):1115-4235
This paper studies the evolutionary ultimatum game on networks when agents have incomplete information about the strategies of their neighborhood agents. Our model assumes that agents may initially display low fairness behavior, and therefore, may have to learn and develop their own strategies in this unknown environment. The Genetic Algorithm Learning Classifier System (GALCS) is used in the model as the agent strategy learning rule. Aside from the Watts-Strogatz (WS) small-world network and its variations, the present paper also extends the spatial ultimatum game to the Barabási-Albert (BA) scale-free network. Simulation results show that the fairness level achieved is lower than in situations where agents have complete information about other agents’ strategies. The research results display that fairness behavior will always emerge regardless of the distribution of the initial strategies. If the strategies are randomly distributed on the network, then the long-term agent fairness levels achieved are very close given unchanged learning parameters. Neighborhood size also has little effect on the fairness level attained. The simulation results also imply that WS small-world and BA scale-free networks have different effects on the spatial ultimatum game. In ultimatum game on networks with incomplete information, the WS small-world network and its variations favor the emergence of fairness behavior slightly more than the BA network where agents are heterogeneously structured.  相似文献   

14.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nash equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

15.
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners’ Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game’s properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.  相似文献   

16.
Quantum Game of Two Discriminable Coins   总被引:1,自引:0,他引:1  
In some recent letters, it was reported that quantum strategies are more successful than classical ones for coin-tossing and roulette game. In this paper, we will solve the quantum game of two discriminable coins. And we develop two methods, analogy method and isolation method, to study this problem.  相似文献   

17.
In some real complex systems the structures are difficult to map or changing over time. To explore the evolution of strategies on these complex systems, it is not realistic enough to specify their structures or topological properties in advance. In this paper, we address the evolutionary game on a stochastic growth network adopting the prisoner’s dilemma game. We introduce a growing rate qq to control the ratio of network growth to strategy evolution. A large qq denotes that the network grows faster than strategy evolution. Simulation results show that a fast growing rate is helpful to promote the average payoffs of both cooperators and defectors. Moreover, this parameter also significantly influences the cooperation frequency on the resulting networks. The coexisting mechanisms in this paper may provide a beneficial insight for understanding the emergence of complex topological structures and game behaviors in numerous real systems.  相似文献   

18.
Reputation-based network selection mechanism using game theory   总被引:1,自引:0,他引:1  
Current and future wireless environments are based on the coexistence of multiple networks supported by various access technologies deployed by different operators. As wireless network deployments increase, their usage is also experiencing a significant growth. In this heterogeneous multi-technology multi-application multi-terminal multi-user environment users will be able to freely connect to any of the available access technologies. Network selection mechanisms will be required in order to keep mobile users “always best connected” anywhere and anytime. In such a heterogeneous environment, game theory techniques can be adopted in order to understand and model competitive or cooperative scenarios between rational decision makers. In this work we propose a theoretical framework for combining reputation-based systems, game theory and network selection mechanism. We define a network reputation factor which reflects the network’s previous behaviour in assuring service guarantees to the user. Using the repeated Prisoner’s Dilemma game, we model the user–network interaction as a cooperative game and we show that by defining incentives for cooperation and disincentives against defecting on service guarantees, repeated interaction sustains cooperation.  相似文献   

19.
With some reviews on the investigations on the schemes for quantum state transfer based on spin systems, we discuss the quantum dynamics of magnetically-controlled networks for Bloch electrons. The networks are constructed by connecting several tight-binding chains with uniform nearest-neighbor hopping integrals. The external magnetic field and the connecting hopping integrals can be used to control the intrinsic properties of the networks. For several typical networks, rigorous results are shown for some specific values of external magnetic field and the connecting hopping integrals: a complicated network can be reduced into a virtual network, which is a direct sum of some independent chains with uniform nearest-neighbor hopping integrals. These reductions are due to the fermionic statistics and the Aharonov-Bohm effects. In application, we study the quantum dynamics of wave packet motion of Bloch electrons in such networks. For various geometrical configurations, these networks can function as some optical devices, such as beam splitters, switches and interferometers. When the Bloch electrons as Gaussian wave packets input these devices, various quantum coherence phenomena can be observed, e.g., the perfect quantum state transfer without reflection in a Y-shaped beam, the multi-mode entanglers of electron wave by star-shaped network, magnetically controlled switches, and Bloch electron interferometer with the lattice Aharonov-Bohm effects. With these quantum coherent features, the networks are expected to be used as quantum information processors for the fermion system based on the possible engineered solid state systems, such as the array of quantum dots that can be implemented experimentally.   相似文献   

20.
G. Abal  H. Fort 《Physica A》2008,387(21):5326-5332
Iterated bipartite quantum games are implemented in terms of the discrete-time quantum walk on the line. Our proposal allows for conditional strategies, as two rational agents make a choice from a restricted set of two-qubit unitary operations. We discuss how several classical strategies are related to families of quantum strategies. A quantum version of the well known Prisoner’s Dilemma bipartite game, in which both players use mixed strategies, is presented as a specific example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号