首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directed ion velocities in a vacuum arc discharge plasma are measured on the basis of a study of the ion emission current response to a rapid change of arc current. It is shown that these velocities are about 106 cm/s, are determined by the cathode material, and are almost independent of the ion charge number. Applying a magnetic field results in an increase in the directed ion velocity. As the gas pressure increases, the directed ion velocity decreases; this is the only case where the directed velocities are observed to depend on the ion charge number.  相似文献   

2.
The ecton model of the cathode spot is used to analyze the main parameters of ion flow in vacuum arcs (ion erosion, mean charge, and velocity). It is shown that the arc plasma is formed as a result of microexplosions at the cathode surface, induced by the Joule heating by the high-density current of explosive electron emission. Ionization processes are localized in a narrow region of the order of a micrometer near the cathode and the ionization composition of the plasma subsequently remains unchanged. Under the action of the electron pressure gradient, ions acquire directional velocities of the order of 106 cm/s even over small distances of the order of several micrometers.  相似文献   

3.
An experimental confirmation was obtained of the anode potential fall effect in pulsed broad-beam ion and plasma sources utilizing the evaporation of metal by a vacuum arc. An increase in the overall voltage across the arc discharge was discovered. The investigations demonstrated that the magnitude of the positive anode fall depends on the structural features of the ion source and are determined by the ratio of the plasma flux directed onto the lateral surface of the anode to the total plasma flux from the cathode spot. It was established that the anode fall effect is controlled and makes it possible to influence the homogeneity of the ion current distribution over the beam cross section, the efficiency of extracting ions from the plasma, and the charge composition of the ion flux.Scientific-Research Institute of Nuclear Physics, Polytechnic University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 82–92, February, 1994.  相似文献   

4.
This article presents the results of research on the photographic appearance of a highcurrent vacuum arc between butt type copper electrodes a of 30–80 mm diameter and a fixed gap of 10 mm. Current pulses of up to 30 kA peak amplitude at an initial value of (di/dt)0 from 1–10kA/ms and a duration of approximately 14 ms were applied. Arcs were photographed with a high-speed framing camera, mostly at 104 frames/s. A detailed study of discharge modes in phase transition from a high-current diffuse arc to a constricted arc with an anode spot was conducted. Most of the measurements were obtained at a peak current slightly in excess of 10 kA for electrodes of 55 mm diameter. It was found that at peak current exceeding moderately the threshold value of the onset of anode spot formation, the arc is characterized by the following main features: the formation of an anode spot and an anode plasma jet occurs concurrently with a local concentration of cathode spots; the anode spot is, most often, formed on the electrode edge; the coexistence of very varied structures of spots on the cathode; the lack of considerable constriction of the cathode discharge; the pseudo-periodic shrinking and expansion of the area occupied by cathode spots; the existence of a relatively dark space separates the anode plasma jet from the plasma sheath near the cathode surface; the plasma space distribution in the interelectrode gap is non-uniform and non-stationary.This work was supported by State Committee for Scientific Research within the research project No. 3 P40101507.  相似文献   

5.
We have studied the mass and charge composition of an ion beam extracted from the plasma of a vacuum arc with a zirconium deuteride cathode for various durations of the arc current pulse (half width at half amplitude) of 2, 4, 7, and 17 μs. It has been established that the fraction of deuterium ions in the vacuum arc plasma increases with the current and the dependence achieve saturation for current of about 1 kA. For the fraction of deuterium atoms in the cathode at a level of 40%, the fraction of deuterium ions in the vacuum arc plasma can exceed 80%. The experimental results have been interpreted theoretically. It has been shown that the main sources of deuterium ions in a microsecond arc discharge are cathode spots. We have developed a model of deuterium desorption during the operation of cathode spots for quantitatively estimating the concentration of deuterium ions in the arc plasma.  相似文献   

6.
The properties of the ion flux generated in a vacuum arc are reviewed. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of the total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, although some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of the solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory and the gas dynamic theory. Experimental data indicate that these theories serve reasonably well when used to predict the mean values of the charge state, ion potential, and ion energies for the ion flux, but are quite insufficient when compared with the results for the potentials and energies of individual ions  相似文献   

7.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点射流仿真模型,模型中将离子作宏粒子考虑,而电子作无质量流体处理,仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态.仿真结果表明,单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间,其整体几何形状为圆锥形,离子密度从阴极到阳极快速下降.外施纵向磁场会压缩等离子体,使得等离子体射流径向的扩散减少并且轴线上的离子密度升高.随着外施纵向磁场的增大,其对等离子体射流的压缩效应增强,表现为等离子体射流的扩散角度逐渐减小.此外,外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响,压缩效应随电弧电流的增加而逐渐减弱.  相似文献   

8.
A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonmonotonic. It is supposed that the ion current at the cathode is generated within the cathode potential fall region due to the ionization of the evaporated atoms by the plasma thermal electrons having Boltzmann's energy distribution. The model offers a satisfactory explanation for the principal regularities of a hot-cathode vacuum arc with diffuse attachment of the current. The applicability of the model proposed to the explanation of some processes occurring in a vacuum arc, such as the flow of fast ions toward the anode, the current cutoffs and voltage bursts, and the backward motion of a cathode spot in a transverse magnetic field is discussed  相似文献   

9.
The charge-state distribution of ions generated in the metal vapor vacuum arc under a wide range of experimental conditions was measured. The experiments were carried out using an ion source in which the metal vapor vacuum arc is used as the method of plasma production and by which a high-quality, high-current beam of metal ions is produced. Charge-state spectra were measured using a time-of-flight diagnostic; arc voltages were also measured. Parameters that were varied include cathode material, arc current, axial magnetic field strength, neutral gas pressure, and arc geometry  相似文献   

10.
This paper is devoted to an investigation of the directional velocities of the ions generated in cathode spots of vacuum arc discharges. By using emission methods of studying the processes in a vacuum arc discharge, which involve the determination of the parameters and characteristics of the discharge plasma by analyzing the ion current extracted from the plasma and the ion charge states, the velocities of ions have been determined for the majority of cathode materials available in the periodic table. Is has been shown that at a low pressure of the residual gas in the discharge gap the directional velocities of the ions do not depend on the ion charge state. Comparison of the data obtained with calculated values allows the conclusion that the acceleration of ions in a vacuum arc occurs by the magnetohydrodynamic mechanism.  相似文献   

11.
The effect of the nitrogen uptake in α-iron upon spark erosion in gaseous and liquid ammonia, plasma nitriding, and plasma immersion ion implantation is studied. The resulting phases and hyperfine parameters, measured by the Mössbauer spectroscopy, are discussed from the point of view of initial conditions of their preparation and subsequent heat and/or mechanical treatment. Spark erosion in the ammonia gas produces fine particles with the dominating ferromagnetic α-Fe phase (50%). The 20% of specimen volume form α′-Fe and α′′-Fe16N2 phases. The last 30% occupy the γ′-Fe4N, ferro- and paramagnetic ε phases, and γ-Fe(N). Nitriding in the liquid ammonia allows to incorporate the higher content of nitrogen into α-iron particles which results in the formation of paramagnetic ε(ζ)-Fe2N phase. This phase also dominates the surface of α-iron specimen implanted by nitrogen using plasma immersion ion implantation at 300°C/3 h, where high uptake of nitrogen (approx. 30 at%) is reached. Plasma nitriding at 510°C results in the formation of γ′-Fe4N phase.  相似文献   

12.
This paper reviews the properties of the cathode ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, though some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply-charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages, but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory (PH), which assumes that all ions are created at the same potential, and the gas dynamic theory (GD), which assumes that all ions are created with the same flow velocity. Experimental data on the potentials and energies of individual ions indicates that these theories in their original forms are not quite correct, however extensions or modifications of the PH and GD theories seem very likely to be able to predict correct values for the charge states, potentials, and energies of individual ions.  相似文献   

13.
A model of the unstable stage of a spark discharge in vacuum is proposed, which describes all typical manifestations of this stage, including current spikes in the diode, an increase in the potential at the cathode flame front, collective acceleration of ions in vacuum and plasma diodes, change in the cathode erosion mechanism, and the emergence of electron microbeams with a high current density at the anode. It is shown that these processes are associated with the formation of a charged electron layer of a spatially inhomogeneous plasma at the cathode flame boundary at the unstable stage of the spark discharge in vacuum. The emergence of this layer is associated with a limited emissive ability of the plasma at the cathode flame front during its expansion in vacuum. This leads to disruption of the plasma (field-induced emission of electron from the boundary region of the flame) and the formation of a short-lived charged plasma, viz., high-density ion cluster at the cathode flame boundary. The estimates obtained using this model are in good agreement with the experimental data on physical processes at the unstable stage of a vacuum spark discharge.  相似文献   

14.
阴极表面温度是真空弧等离子体放电过程中一个重要参数,对真空弧等离子体的形成、电极腐蚀预测、热传导以及离子源的寿命都有重要影响。真空弧离子源的阴极具有目标小,放电过程快等特点,其温度的测量,对于时间分辨率和空间分辨率要求都很高,阴极表面温度的测量技术的欠缺,使得仅靠理论解析获得的结果难以得到验证。并且等离子体放电过程中测量仪器极易受到弧光的影响,如何避免放电过程中等离子体的辐射也是采用辐射法测量阴极表面温度要考虑的问题。这无疑给其温度场的测试研究带来困难。针对脉冲真空弧等离子体开展阴极表面温度测试实验有着重要意义,在分析了真空弧等离子体放电特性以及背景辐射特性和等离子体放电阴极测温的实际需求,本文基于高速CCD相机研制了一种新型的多光谱高温计。该高温计采用单色高速CCD相机,主要避免RGB彩色相机不能完全滤除背景辐射的弧光。为使用单色CCD相机实现多光谱辐射测温,设计了高温计的光学系统,该系统采用4孔径分光系统。将4种不同波长的滤光片嵌入到1个滤光片中。该研究设计的高温计可用于2 000~6 000 K的等离子体温度测量。并在中国工程物理研究院电子工程研究所进行现场测试,测试过程中将研制的高温计,通过外部触发形式对等离子体放电过程进行跟踪拍摄,高温计完全拍摄到等离子体放电过程。利用真空弧等离子体金属电极阴极放电的实测数据对高温计进行了验证。实验结果表明,设计的新型多光谱高温计能够用于测量真空弧等离子体放电时阴极温度场信息,测量的温度值低于放电电极的沸点温度,与等离子体放电过程中出现气化现象相符,说明高温计测的是等离子体放电阴极的温度。  相似文献   

15.
The paper generalizes the results of research on pulsed-periodic generation of multicomponent ion streams in sources based on vacuum arc discharge. Methods are considered for forming composition-and-energy controlled multicomponent beams for multielement ion implantation in Raduga sources. The features and laws governing the emission properties of wide-aperture ion sources with plasma generation by evaporation of a material in a cathode spot are discussed. A comparative analysis is made of the physical laws and possibilities of forming one-element or multielement ion beams during extraction from a free plasma boundary under conditions when a virtual anode exists and a positive voltage drop near the anode exists in the vacuum-arc-discharge plasma.Scientific-Research Institute of Nuclear Physics at the Tomsk Polytechnical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 34–52, March, 1994.  相似文献   

16.
The principal characteristics of the process of generation of the cathode plasma in a vacuum arc (ion erosion, mean charge of ions) are considered in terms of the ecton model of the cathode spot of a vacuum arc. The estimates of the parameters of ions obtained for a unit cell of a cathode spot – an ecton – are in good qualitative and quantitative agreement with experimental data. The following mechanism for the generation of the cathode plasma of a vacuum arc is proposed. When a region of the cathode is destroyed in an explosive manner due to Joule heating, the material of the cathode sequentially goes over a series of states: the condensed state and the states of imperfect and ideal plasma. During this transition the charge state of the plasma is formed and the ions are accelerated under the action of the pressure gradient in the plasma whose density decreases by several orders of magnitude over distances of 10 m from the cathode surface. The increase in current results in an increase in number of cells, and the principal parameters of the ions are formed as a result of the operation of a unit cell of the spot.  相似文献   

17.
Based on time of flight method, influence of short time vacuum arc current jump on arc plasma parameters were investigated. Superposition of the current pulse of a vacuum arc with a high operating voltage results in the appearance of ions of higher charge state in the discharge plasma and in an increase in the mean ion charge state for most of the cathode materials used in the experiment. The method of a “short-time current jump” can be also used to investigate the parameters of a vacuum arc, in particular to estimate the ion direct velocities in vacuum arc plasmas. Our estimates show that in the presence of a current step the ion velocities are almost identical for all differently charged ions and depend only on the peak current and the ion mass  相似文献   

18.
The ion behavior phenomenon associated with transitions of the anode discharge mode to the anode-spot mode is studied by measuring the wall ion current and by spectroscopic observation in vacuum arcs. The anode mode transfers when the wall ion current attains a certain magnitude that is independent of the cathode, but dependent on the anode. The ion-current function to the arc current increases when the arc current increases in the diffuse arc. Spectral-line intensity of Cu III emitted from the plasma in the anode region increases with an instantaneous arc current of a 5-kA peak (kAp) sinusoidal half-wave. These findings suggest an idea for the mode transition, that an ion generation region appears, and that an increase in the ion density produces a positive potential hump near the anode, which results in the negative anode voltage drop triggering the mode transition. After the mode transition, an arc current is found to reduce the ion current near the crest of a sinusoidal current in a copper arc. This appears to be significant for the arc on a small anode. The decrease in the ion current is attributed to the recombination of ions decelerated by anode vapor with electrons emitted from the hot spot on the anode  相似文献   

19.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

20.
The ion current distribution emerging from a vacuum arc between a Cu cathode and a conical ring anode was measured by a set of five probes. It was found that: (1) the total ion current emerging through the anode was 8.5% of the arc current; (2) the measured ion distribution without a magnetic field was a slightly flattened cosinusoidal function; (3) with an axial magnetic field, the ion current distribution became peaked along the z axis; (4) the total ion current extracted through the anode aperture slightly increased with the magnetic field; and (5) an anode with a larger aperture exhibited less magnetic collimation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号