首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferdov S  Reis MS  Lin Z  Ferreira RA 《Inorganic chemistry》2008,47(21):10062-10066
A new vanadium(III) phosphate, Na3V(OH)(HPO4)(PO4), has been synthesized by using mild hydrothermal conditions under autogeneous pressure. This material represents a very rare example of sodium vanadium(III) phosphate with a chain structure. The crystal structure has been determined by refinement of powder X-ray diffraction data, starting from the atomic coordinates of an isotypic compound, Na3Al(OH)(HPO4)(PO4), which was obtained under high temperature and high pressure. The phase crystallizes in monoclinic space group C2/m (No. 12) with lattice parameters a = 15.423(9) A, b = 7.280(0) A, c = 7.070(9) A, beta = 96.79(7) degrees, V = 788.3(9) A(3), and Z = 4. The structure consists of one-dimensional chains composed of corner-sharing VO5(OH) octahedra running along the b direction. They are decorated by isolated PO4 and HPO4 tetrahedra sharing two of their corners with the ones of the vanadium octahedra. The interconnection between the chains is assured by three crystallographically distinct Na(+) cations. Magnetic investigation confirms the 3+ oxidation state of the vanadium ions and reveals an antiferromagnetic arrangement between those ions through the chain.  相似文献   

2.
An H  Li Y  Wang E  Xiao D  Sun C  Xu L 《Inorganic chemistry》2005,44(17):6062-6070
Three unusual compounds based on polyoxometalate building blocks, [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2][Ag2IMo6O24(H2O)4] x 6.25H2O (1), [(H2O)4Na2(C6NO2H5)6Ag3][IMo6O24] x 6H2O (2), and (C6NO2H6)2[(C6NO2H5)2Ag][Cr(OH)6Mo6O18] x 4H2O (3), have been synthesized and characterized by elemental analysis; IR, XPS, and ESR spectroscopy; TG analysis; and single-crystal X-ray diffraction. Compound 1 is constructed from the cationic two-dimensional (2D) coordination polymer sheets which are constituted of [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2]3+ and anionic [Ag2IMo6O24(H2O)4]3- chains as pillars, forming a three-dimensional (3D) supramolecular framework via weak Ag-O interactions. Compound 2 is composed of the well-defined [IMo6O24]5- building blocks, which are linked through trinuclear Ag-pyridine-3-carboxylic acid, [(C6NO2H5)6Ag3]3+, fragments into a one-dimensional (1D) hybrid chain; adjacent chains are further connected by sodium cations to yield a novel 2D network. Compound 3 has a 1D chainlike structure constructed from [Cr(OH)6Mo6O18]3- building blocks and Ag-pyridine-4-carboxylic acid coordination units. The crystal data for these compounds are the following: 1, triclinic, P1, a = 13.280(3) A, b = 13.641(3) A, c = 16.356(3) A, alpha = 89.68(3) degrees, beta = 88.31(3) degrees, gamma = 75.87(3) degrees, Z = 2; 2, triclinic, P1, a = 11.978(2) A, b = 12.008(2) A, c = 13.607(3) A, alpha = 116.14(3) degrees, beta = 108.85(3) degrees, gamma = 93.86(3) degrees, Z = 1; 3, triclinic, P1, a = 10.458(2) A, b = 10.644(2) A, c = 12.295(3) A, alpha = 97.40(3) degrees, beta = 112.38(3) degrees, gamma = 113.59(3) degrees, Z = 1.  相似文献   

3.
The crystal structure and thermal stability of two cadmium sulfide nanoclusters prepared in zeolite A (LTA) have been studied by XPS, TGA, and single-crystal and powder XRD. The crystal structures of Cd2.4Na3.2(Cd6S4)0.4(Cd2Na2S)0.6(H2O)> or =5.8[Si12Al12O48]-LTA (a = 12.2919(7) A, crystal 1 (hydrated)) and /Cd4Na2(Cd2O)(Na2O)/[Si12Al12O48]-LTA (a = 12.2617(4) A, crystal 2 (dehydrated)) were determined by single-crystal methods in the cubic space group Pm3m at 294(1) K. Crystal 1 was prepared by ion exchange of Na12-LTA in an aqueous stream 0.05 M in Cd2+, followed by washing in a stream of water, followed by reaction in an aqueous stream 0.05 M in Na2S. Crystal 2 was made by dehydrating crystal 1 at 623 K and 1 x 10(-6) Torr for 3 days. In crystal 1, Cd6S4(4+) nanoclusters were found in and extending out of about 40% of the sodalite cavities. Central to each Cd6S4(4+) cluster is a Cd4S4 unit (interpenetrating Cd2+ and S2- tetrahedra with near Td symmetry, Cd-S = 2.997(24) A, Cd-S-Cd = 113.8(12) degrees, and S-Cd-S = 58.1(24) degrees). Each of the two remaining Cd2+ ions bonds radially through a 6-ring of the zeolite framework to a sulfide ion of this Cd4S4 unit (Cd-S = 2.90(8) A). In each of the remaining 60% of the sodalite cavities of crystal 1, a planar Cd2Na2S4+ cluster was found (Cd-S/Na-S = 2.35(5)/2.56(14) A and Cd-S-Cd/Na-S-Na = 122(5)/92(7) degrees). Cd6S4(4+) and Cd2Na2S4+ are stable within the zeolite up to about 700 K in air. Upon vacuum dehydration at 623 K, all sulfur was lost (crystal 2). Instead as anions, only two oxide ions remain per sodalite unit. One bridges between two Cd2+ ions (Cd2O2+, Cd-O = 2.28(3) A) and the other between two Na+ ions (Na2O, Na-O = 2.21(10) A).  相似文献   

4.
Unique hetero(poly)metallic complexes [ClM(OAr)(3)Na] (M = Lu (3a), Y (3b)) and [ClY(OAr')(3)Y(OAr')(3)Na] (4) containing the bis (OAr = OC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4) and mono (OAr' = OC(6)H(4)(CH(2)NMe(2))-2) o-amino-substituted phenolate ligands have been synthesized and characterized by NMR ((1)H, (13)C, and (89)Y) and X-ray structure determinations (3a and 4). Crystals of 3a are triclinic, space group P&onemacr;, with unit cell dimensions a = 10.706(1) ?, b = 14.099(2) ?, c = 18.882(3) ?, alpha = 93.48(1) degrees, beta = 99.49(1) degrees, gamma = 108.72(11) degrees, and Z = 2. The chlorine, lutetium, and sodium atoms in 3a lie on a pseudo-3-fold axis ( angleCl-Lu.Na = 177.82(5) degrees ) around which the three phenolate ligands are arranged in such a way that a "propeller-like" molecule with screw-type chirality results. Crystals of 4 are triclinic, space group P1, with unit cell dimensions a = 11.411(4) ?, b = 13.325(4) ?, c = 13.599(4) ?, alpha = 88.91(3) degrees, beta = 65.44(2) degrees, gamma = 72.77(3) degrees, and Z = 1. In 4 the chlorine, the two yttrium and the sodium atoms lie on a pseudo-3-fold axis (Cl-Y(1).Y(2).Na: angleCl-Y.Y = 179.36(8) degrees and angleY.Y.Na = 178.38(10) degrees ) around which the six phenolate ligands are arranged in two shells of three ligands. One shell bridges the yttrium atoms in an asymmetric fashion, while the second shell bridges the second yttrium and the sodium atom, resulting in two shells of opposite screw-type chirality. (1)H, (13)C, and (89)Y (for 3b and 4) NMR confirmed that the structures found for 3a and 4 in the solid state are retained in solution. For 4 (89)Y NMR showed two separate resonances (202.4 and 132.4 ppm), with (2)J(YY) = 0.4 Hz. The formation of 3a and 3b is described as resulting from positive cooperativity in anion-cation bonding: coordination of chloride anion to a neutral metal tris(phenolate) leads to preorganization of available binding sites in the resulting anionic complex for the binding of the sodium cation. In 4 this cooperativity is the driving force for the self-assembly of an anionic bimetallic molecular structure with available, preorganized binding sites for the capture of the cation. A proposal is made to use these observations for the possible synthesis of new coordination polymers.  相似文献   

5.
The crystal structures of (Ph3PCl)2[Cu3Cl8] (1) (triclinic, space group P1, a = 9.480(6) A, b = 10.243(8) A, c = 11.232(6) A, alpha = 86.76(4) degrees, beta = 66.62(5) degrees, gamma = 83.92(4) degrees, Z = 1) and (Ph3PMe)2[Cu3Br8] (2) (triclinic, space group P1, a = 9.795(4) A, b = 10.472(4) A, c = 11.392(4) A, alpha = 86.67(3) degrees, beta = 66.67(3)degrees, gamma = 83.14(3) degrees, Z = 1), reported here, demonstrate a new supramolecular motif for cations of the type Ph3PY+ where Y is CH3 or Cl. The crystals contain columns of cations propagated by alternating 6-fold phenyl embraces (6PE) and pseudo-6PE: the pseudo-6PE described here contains four phenyl rings and two hetero groups (Cl or CH3), and is symbolized as 4P2Y. The zigzag sequence of cations engaged in ...6P...4P2Y...6P...4P2Y... is similar to the zigzag chain of infinite 6-fold phenyl embraces (ZZI6PE) frequently adopted by Ph4P+ cations in crystals. One-dimensionally nonmolecular anion chains with repeat unit [Cu3X8] run parallel to and between the columns of cations. The coordination geometry in the [Cu3X8(2-)]1 to infinity chain has not been observed in crystals with other cations, and it is postulated that the attractive interactions between cations in the pseudo-ZZI6PE crystal supramolecular motif control the geometry of the anions through the requirement for commensurability of cation columns and anion chains.  相似文献   

6.
The tris(phenyltin)-substituted tungstoantimonate(III) Cs6[(PhSn)3Na3(alpha-SbW9O33)2].20H2O (1) and the tetrakis-(phenyltin)-substituted tungstoarsenate(III) Na9[[(PhSn)2O]2H(alpha-AsW9O33)2].20H2O (2) have been prepared by reaction of phenyltin trichloride with Na9[alpha-SbW9O33].19.5H2O and Na9[alpha-AsW9O33].19.5H2O, respectively, in aqueous solution. The products were characterized by elemental analysis, X-ray crystallography, multinuclear NMR, and infrared spectroscopy. Crystals of 1 are monoclinic, space group P2(1)/n, with a = 13.7952(1) A, b = 22.3133(2) A, c = 34.4493(2) A, beta = 90.933(1) degrees, and Z = 4. Anion 1 has nominal D3h symmetry and contains three PhSn3+ groups and three sodium ions sandwiched between [alpha-SbW9O33]9- units. Crystals of 2 are triclinic, space group P1, with a = 15.272(6) A, b = 15.303(6) A, c = 16.760(7) A, alpha = 93.59(3) degrees, beta = 106.187(19) degrees, gamma = 112.23(3) degrees, and Z = 1. Anion 2 has nominal C2h symmetry and contains four PhSn3+ groups sandwiched between two [alpha-AsW9O33]9- units.  相似文献   

7.
杜宝石  黄小荥 《结构化学》1996,15(2):141-146
在水溶液中培养了镨、钕、钇与甘氨酸形成的三元配合物。元素分析和热分析表明,该配合物可用Pr_xNd_yY_z(Gly)_6(H_2O)_4(ClO_4)_6·5H_2O(X+y+z=2)表示其分子式。X射线衍射方法测定了其单晶结构,结果表明,该晶体属三斜晶系,空间群P1,化学式Pr_(0.775)Nd_(0.700)Y_(0.525)Cl_6O_(45)N_6C_(12)H_(48),M_r=1466.09,晶胞参数如下:a=11.564(1),b=14.118(3),c=15.668(2)A,α=96.99(1),β=102.72(1),γ=105.33(1)°,晶胞体积V=2362(1)A~3,Z=2,D_c=2.060g/cm~3,结构偏离因子R=0.032,R_w=0.048。晶胞中存在两个络合单元,每个单元可用M_1M2(Gly)_6(ClO_4)_6(H_2O)_4.5H_2O表示,M_1=0.4Pr+0.375Nd+0.225Y,M2=0.375Pr+0.325Nd+0.30Y。三种稀土元素按一定比例统计性地占有两个格位。羧基以桥式联结金属离子,形成一维链式聚合物结构。在络合单元中,一个稀土离子是9配位,其配位多面体为畸变?  相似文献   

8.
From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n (2) was obtained. Compounds 1 and 2 were characterized by means of elemental analysis, thermal analysis (TG/DSC), vibrational spectroscopy, and electron paramagnetic resonance (EPR). The crystal structure of 2 reveals that each Cu(II) is coordinated by two nitrogen atoms from different BPP ligands and two 3-thiopheneacetate groups within a distorted square planar geometry in a trans-[N, N, O, O] arrangement. The BPP ligand adopts a TG conformation bridging two copper centers giving rise to a 1-D sinusoidal polymeric chain along the crystallographic c axis. Adjacent 1-D chains are extended into a 2-D coordination network through pairs of monatomic carboxylate bridges in direction of the b axis. This bridging mode affords centrosymmetric dimeric units Cu2O2, and therefore, the copper ions are involved in a CuN2O2O' chromophore displaying a (4 + 1) square pyramidal coordination in the resultant 2-D polymeric network. The polycrystalline X-band EPR spectrum of 2 at room temperature is characteristic of a triplet state with nonnegligible zero-field splitting in agreement with the crystal structure. Crystal data for 2: monoclinic, space group P2(1)/c, a = 9.4253(10) A, b = 10.9373(10) A, c = 23.6378(10) A, beta = 98.733(4) degrees, Z = 2.  相似文献   

9.
The reaction of the Er3+ ion with polycarboxylate ligands in gel media leads to coordination polymers exhibiting various structural types and dimensionalities. Five Er3+/1,4-benzenedicarboxylate-based coordination polymers have been obtained in such conditions. Four out of the five are new. Their crystal structures are reported and compared herein. Compound 1, namely, Er2Ter3(H2O)6, where H2Ter symbolizes the terephthalic acid, crystallizes in the space group P1 (No. 2) with a = 7.8373(10) A, b = 9.5854(2) A, c = 10.6931(2) A, alpha = 68.7770(8) degrees, beta = 70.8710(8) degrees, and gamma = 75.3330(12) degrees. It has already been reported elsewhere. The last four compounds are new. Compound 2, namely, Er2Ter3(H2O)6 x 2 H2O, crystallizes in the space group P121/a1 (No. 14) with a = 6.7429(2) A, b = 22.4913(7) A, c = 9.6575(3) A, and beta = 91.6400(18) degrees. Compound 3, namely Er2Ter3(H2O)8 x 2 H2O crystallizes in the space group P1 (No. 2) with a = 7.5391(2) A, b = 10.0533(3) A, c = 10.4578(3) A, alpha = 87.7870(10) degrees, beta = 82.5510(11) degrees, and gamma = 86.2800(16) degrees. Compound 4, namely, Er2Ter3(H2O)6 x 2 H2O crystallizes in the space group C2/c (No. 15) with a = 38.5123(13) A, b = 11.1241(4) A, c = 7.0122(2) A, and beta = 98.634(2) degrees. Compound 5, namely, Er2Ter3(H2O)6 x H2O, crystallizes in the space group P1 (No. 2) with a = 6.8776(10) A, b = 11.0420(2) A, c = 18.5675(3) A, alpha = 84.7240(6) degrees, beta = 81.8380(6) degrees, and gamma = 84.1770(8) degrees. A computational method has also been developed to evaluate the potential porosity of the coordination polymers. This method is described and then applied to the different Er2Ter3(H2O)n coordination polymers previously described.  相似文献   

10.
Three new palladium compounds, PdSeO3, PdSe2O5, and Na2Pd(SeO4)2, containing selenium oxoanions of both Se(IV) and Se(VI) have been prepared under mild hydrothermal conditions. PdSe2O5 and Na2Pd(SeO4)2 both possess one-dimensional structures. Within the structure of PdSe2O5, [PdO4] square planar building blocks are joined together through diselenite, Se2O52-, anions, and form a zigzag chain along the c axis. In Na2Pd(SeO4)2, [PdO4] units are connected by two selenate, SeO42-, anions, and extend along the a axis to form a [Pd(SeO4)2]2- chain. Na+ cations reside in the space between the [Pd(SeO4)2]2- chains and act as counter cations. Unlike above two compounds, PdSeO3 exhibits a layered structure. In the structure of PdSeO3, [PdO4] units are connected to each other by corner-sharing and form a zigzag chain along the b axis. The chains are further joined together by tridentate selenite, SeO32-, anions to form layers in the [ab] plane that stack along the c axis. Crystallographic data: (193 K; Mo Kalpha, lambda=0.71073 A): PdSeO3, monoclinic, space group P21/m, a=3.8884(5) A, b=6.4170(8) A, c=6.1051(7) A, beta=96.413(2) degrees, V=151.38(3) A3, Z=2; PdSe2O5, monoclinic, space group C2/c, a=12.198(2) A, b=5.5500(8) A, c=7.200(1) A, beta=107.900(2) degrees , V=463.8(1) A3, Z=4; Na2Pd(SeO4)2, triclinic, space group P, a=4.9349(11) A, b=5.9981(13) A, c=7.1512 (15) A, alpha=73.894(4) degrees, beta=86.124(4) degrees, gamma=70.834(4) degrees, V=192.03(7) A3, Z=1.  相似文献   

11.
The new anhydrous borate Na2Co2B12O21 has been synthesized by flux methods and studied by single-crystal X-ray diffraction (space group I2/a with a = 17.1447(15) A, b = 4.5530(5) A, c = 19.4408(15) A, beta = 103.212(5) degrees , V = 1477.4(2) A3, Z = 4). Refinement of its structure reveals it is the first metaborate exhibiting a tunnel network, with internal dimensions of 4.5 x 8.8 A2. Further single-crystal diffraction studies show that the Na+ ions within the tunnels are exchangeable with Li+ along with the absorption of water molecules to form Li2(H2O)2Co2B12O21, making this compound a unique non-siliceous zeotype.  相似文献   

12.
Two new mixed-metal tellurites, Na1.4Nb3Te4.9O18 and NaNb3Te4O16, have been synthesized by standard solid-state techniques using Na2CO3, Nb2O5, and TeO2 as reagents. The structures of Na1.4Nb3Te4.9O18 and NaNb3Te4O16 were determined by single-crystal X-ray diffraction. Both of the materials exhibit three-dimensional structures composed of NbO6 octahedra, TeO4, and TeO3 polyhedra. The Nb5+ and Te4+ cations are in asymmetric coordination environments attributable to second-order Jahn-Teller (SOJT) effects. The Nb5+ cations undergo an intraoctahedral distortion toward a corner (local C4 direction), whereas the Te4+ cations are in distorted environments owing to their nonbonded electron pair. Infrared and Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dielectric measurements were also performed on the reported materials. Crystal data: Na1.4Nb3Te4.9O18, monoclinic, space group C2/m (No. 12), with a = 32.377(5) A, b = 7.4541(11) A, c = 6.5649(9) A, beta = 95.636(5) degrees, V = 1576.7(4) A3, and Z = 4; NaNb3Te4O16, monoclinic, space group P2(1)/m (No. 11), with a = 6.6126(13) A, b = 7.4738(15) A, c = 14.034(3) A, beta = 102.98(3) degrees, V = 675.9(3) A3, and Z = 2.  相似文献   

13.
Na2[UO2(IO3)4(H2O)] has been synthesized under mild hydrothermal conditions. Its structure consists of Na+ cations and [UO2(IO3)4(H2O)](2-) anions. The [UO2(IO3)4(H2O)](2-) anions are formed from the coordination of a nearly linear uranyl, UO2(2+), cation by four monodentate IO(3-) anions and a coordinating water molecule to yield a pentagonal bipyramidal environment around the uranium center. The water molecules form intermolecular hydrogen bonds with the terminal oxo atoms of neighboring [UO2(IO3)4(H2O)](2-) anions to yield one-dimensional chains that extend down the b axis. There are two crystallographically unique iodate anions in the structure of Na2[UO2(IO3)4(H2O)]. One of these anions is aligned so that the lone-pair of electrons is also directed along the b axis. The overall structure is therefore polar, owing to the cooperative alignment of both the hydrogen bonds and the lone-pair of electrons on iodate. The polarity of the monoclinic space group C2 (a = 11.3810(12) A, b = 8.0547(8) A, c = 7.6515(8) A, beta = 90.102(2) degrees , Z = 2, T = 193 K) found for this compound is consistent with the structure. Second-harmonic generation of 532 nm light from a 1064 nm laser source yields a response of approximately 16x alpha-SiO2.  相似文献   

14.
Chen CS  Chiang RK  Kao HM  Lii KH 《Inorganic chemistry》2005,44(11):3914-3918
A new uranium(VI) silicate, Cs2(UO2)(Si2O6), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. It crystallizes in the orthorhombic space group Ibca (No. 73) with a = 15.137(1) A, b = 15.295(1) A, c = 16.401(1) A, and Z = 16. Its structure consists of corrugated achter single chains of silicate tetrahedra extending along the c axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework which delimits 8- and 6-ring channels. The Cs+ cations are located in the channels or at sites between channels. The 29Si and 133Cs MAS NMR spectra are consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectra are assigned. Variable-temperature in situ powder X-ray diffraction study of the hydrate Cs2(UO2)(Si2O6) x 0.5H2O indicates that the framework structure is stable up to 800 degrees C and transforms to the structure of the title compound at 900 degrees C. A comparison of related uranyl silicate structures is made.  相似文献   

15.
A new bis tridentate ligand 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] H(2)L(1) which can bind transition metal ions has been synthesized via the condensation of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride. Two copper(II) coordination compounds have been prepared and characterized: [Cu(2)(L(1))(hfac)(2)].3CH(3)CN.H(2)O (1) and [Cu(2)(L(1))Cl(2)].CH(3)CN (2). The single-crystal X-ray structures reveal that complex 1 crystallizes in the triclinic space group P1, with the unit cell parameters a = 12.7185(6) A, b = 17.3792(9) A, c = 19.4696(8) A, alpha = 110.827(2) degrees, beta = 99.890(3) degrees, gamma = 97.966(3) degrees, V = 3868.3(3) A3, Z = 4, R = 0.0321 and R(w) = 0.0826. Complex 2 crystallizes in the monoclinic space group P2(1)/n with the unit cell parameters a = 12.8622(12) A, b = 9.6100(10) A, c = 19.897(2) A, beta = 102.027(3) degrees, V = 2405.3(4) A(3), Z = 4, R = 0.0409 and R(w) = 0.1005. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In 1, the coordination geometry around both Cu(II) ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hexafluoroacetylacetonate counterions. In 2 both Cu(II )ions adopt a (4 + 1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford a mu-Cl-bridged dimerized [Cu(2)(L(1))Cl(2)](2) complex. The magnetic susceptibility data for 1 (2 -270 K), reveal the occurrence of weak antiferromagnetic interactions between the Cu(II) ions. In contrast, variable-temperature magnetic susceptibility measurements for 2 reveal more complex magnetic properties, with the presence of a weak antiferromagnetic exchange (J = -10.1 K) between the copper ions in each dinuclear copper complex and a stronger ferromagnetic exchange interaction (J = 32.9 K) between the Cu(II) ions of the Cu(mu-Cl)(2)Cu dimeric bridging units.  相似文献   

16.
A new copper(II) acetate, [Na(2)Cu(CH(3)COO)(4)(H(2)O)].H(2)O (1), has been crystallized from an aqueous solution containing sodium acetate and copper(II) acetate monohydrate in a 4:1 ratio and the structure determined by X-ray crystallography. 1 crystallizes in the monoclinic space group P2(1)/c, with a = 16.638(3) A, b = 11.781(2) A, c = 15.668(3) A, beta = 90.11(3) degrees, V = 3071.0(11) A(3), and Z = 4. In the asymmetric unit, sodium ions bridge two crystallographically unique square planar [Cu(CH(3)COO)(4)](2-) units to their symmetry-generated neighbors to form corrugated 2D sheets of Na(2)Cu(CH(3)COO)(4), which are held together by H-bonding interactions involving the waters of crystallization. In contrast, the structures of known sodium copper acetates are better described as 3D frameworks. The metal centers are bridged by a number of acetates in novel coordination modes. The square planar Cu(II) geometry generated by oxygen atoms from four different acetates is an unexpected feature given the weak ligand field provided by the acetate ligands.  相似文献   

17.
Karimova OV  Burns PC 《Inorganic chemistry》2007,46(24):10108-10113
Three uranyl perrhenates have been synthesized, and their structures have been determined. (UO2)2(ReO4)4(H2O)3 (1) is triclinic, space group P, a=5.2771(7), b=13.100(2), c=15.476(2) A, alpha=107.180(2), beta=99.131(3), gamma=94.114(2) degrees, V=1001.12 A3, Z=2. [(UO2)4(ReO4)2O(OH)4(H2O)7](H2O)5 (2) is also triclinic, space group P, a=7.884(1), b=11.443(2), c=16.976(2) A, alpha=83.195(4), beta=89.387(4), gamma=85.289(4) degrees, V=1515.70 A3, Z=2. Na(UO2)(ReO4)3(H2O)2 (3) is monoclinic, space group C2/m, a=12.311(3), b=22.651(6), c=5.490(1) A, beta=109.366(6) degrees, V=1444.24 A3, Z=4. These compounds are the first structurally characterized uranyl perrhenates that do not contain organic ligands. In each structure, perrhenate groups coordinate uranyl ions at the equatorial vertices of pentagonal bipyramids. 1 contains complex chains of uranyl pentagonal bipyramids that are bridged by vertex sharing with perrhenate groups. The structural units in 2 and 3 consist of three novel finite clusters that include the coordination of uranyl ions with perrhenate. In general, weakly coordinating ligands such as perchlorate, perrhenate, and pertechnetate are assumed not to form stable complexes with uranyl in solutions or solids. The current findings, together with other recently reported studies, indicate each of these ligands can coordinate uranyl, and novel structure types result.  相似文献   

18.
A new polynucleating ligand, 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), has been prepared and characterized as its dodecahydrobromide salt. Addition of base to an aqueous solution of this salt and 4 molar equivalents (m.e.) of a Ni(II) salt produces a mixture of bi- and trinuclear complexes, which can be separated by cation-exchange chromatography (CEC) and crystallized as [Ni2Ldur](ClO4)(4).2H2O (1) and [Ni3Ldur(H2O)6](ClO4)(6).9H2O (2). The "full capacity" tetranuclear complex, [Ni4Ldur(H2O)12](ClO4)(8).8H2O (3), is obtained by slow addition of Ldur to a refluxing aqueous solution of excess Ni2+ ions, followed by CEC purification. Treatment of Ldur with 4 m.e. of a copper(II) salt produces exclusively the tetranuclear complex, [Cu4Ldur(H2O)8](ClO4)(8).9H2O (4), while reaction with only 2 m.e. of Cu2+ ions yields the binuclear complex, [Cu2Ldur](ClO4)(4).4H2O (5). The X-ray structures of complexes 1,2,4, and [Cu2Ldur](ClO4)(4).3H2O (5') have been determined; all are monoclinic, P2(1)/c: for 1, a = 9.497(3) A, b = 13.665(5) A, c = 19.355(6) A, beta = 100.57(2) degrees, V = 2469(1) A3, and Z = 2; for 2, a = 22.883(7) A, b = 15.131(6) A, c = 20.298(8) A, beta = 97.20(3) degrees, V = 6973(4) A3, and Z = 4; for 4, a = 16.713(7) A, b = 16.714(6) A, c = 14.775(11) A, beta = 108.24(5) degrees, V = 3920(4) A3, and Z = 2; and for 5', a = 9.5705(1) A, b = 13.0646(1) A, c = 20.1298(2) A, beta = 103.1618(8) degrees, V = 2450.81(4) A3, and Z = 2. The metal centers in 1 and 5' lie in distorted octahedral environments, each facially coordinated by two of the triamine rings of Ldur, the cation in each case being centrosymmetric. In 2, one of the nickel(II) centers is similarly sandwiched by two triamine rings, while the other two nickel(II) centers are each coordinated by a single triamine ring from the ligand, with their distorted octahedral coordination spheres each being completed by three water molecules. In 4, the four triamine rings of Ldur bind to separate copper(II) centers, with two water molecules occupying the remaining two sites of the distorted square pyramidal (SP) coordination spheres, the cation again being centrosymmetric.  相似文献   

19.
牛淑云  张亚玲  来巍  杨忠志  杨光第  叶玲 《化学学报》2001,59(12):2170-2175
以Nd(NO3).6H2O和NH2C6H4COOH为原料,经[Nd(C7H6NO2)3.H2O]的自组装,得到了具有三维网络结构的配位聚合物[Nd(C7H6NO2)3.H2O]n。该聚合物晶体属单斜晶系,空间群P2(1)/n,a=0.98069(5)nm,b=2.2736(2)nm,c=0.98254(8)nm,β=100.053(5)°,V=2.1571(3)nm^3,Z=4。最后的一致性因子R=0.038。磁性研究表明,该化合物在低温下表现出反铁磁性质。测定了化合物的UV-vis-NIR和IR光谱,进行了分析和指认。  相似文献   

20.
Yan B  Maggard PA 《Inorganic chemistry》2007,46(16):6640-6646
New hybrid layered vanadates, M(bpy)V4O10 (I, M = Cu+; II, M = Ag+; bpy = 4,4'-bipyridine), were prepared from hydrothermal reactions at 220-230 degrees C, and their structures were characterized by single-crystal X-ray diffraction [I, P21/c (No. 14), Z = 4, a = 3.6154(3) A, b = 21.217(1) A, c = 20.267(1) A, and beta = 90.028(3) degrees ; II, P (No. 2), Z = 2, a = 3.5731(4) A, b = 10.429(1) A, c = 21.196(2) A, alpha = 89.031(5) degrees , beta = 89.322(5) degrees , and gamma = 85.546(5) degrees ]. The structures of I and II are closely related, though not isostructurally, with both containing partially reduced V4O10- layers that are constructed from zigzag chains of edge-sharing VO5 tetragonal pyramids. Neighboring zigzag chains within a layer condense via shared vertices and alternate between versions containing V4.5+ and V5+ ions, such that two out of four symmetry-unique V atoms are reduced by a half-electron on average. The interlayer spaces contain unusual M(bpy)+ chains formed from the coordination of two bridging bpy ligands to Ag+/Cu+ in a nearly linear fashion and each with a third bond to a single apical O atom of the reduced (V4.5+) VO5 tetragonal pyramids. Both I and II are stable until approximately 350-400 degrees C in O2, at which point the ligands are liberated to yield the purely inorganic MxV4O10 (M = Ag, Cu) solids. The electrical conductivities of both compounds show a temperature dependence that is consistent with Mott's variable-range-hopping model for randomly localized electrons. Magnetic susceptibilities of both I and II can be fitted to a Curie-Weiss expression (theta = -25 and -31 K, respectively; C approximately 0.40 emu.mol-1.K for both) at higher temperatures and one unpaired spin per formula. However, at below approximately 12-18 K, both show evidence for an antiferromagnetic transition that can be fitted well to the Heisenberg linear antiferromagnetic chain model. These results are analyzed with respect to related reduced vanadates and help to provide new structure-property insights for strongly correlated electron systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号