首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The development of multi-analyte methods for lipophilic shellfish toxins based on liquid chromatography–mass spectrometry permits rapid screening and analysis of samples for a wide variety of toxins in a single run. Validated methods and appropriate certified reference materials (CRMs) are required to ensure accuracy of results. CRMs are essential for accurate instrument calibration, for assessing the complete analytical method from sample extraction to data analysis and for verifying trueness. However, CRMs have hitherto only been available for single toxin groups. Production of a CRM containing six major toxin groups was achieved through an international collaboration. Preparation of this material, CRM-FDMT1, drew on information from earlier studies as well as improved methods for isolation of toxins, handling bulk tissues and production of reference materials. Previous investigations of stabilisation techniques indicated freeze-drying to be a suitable procedure for preparation of shellfish toxin reference materials and applicable to a wide range of toxins. CRM-FDMT1 was initially prepared as a bulk wet tissue homogenate containing domoic acid, okadaic acid, dinophysistoxins, azaspiracids, pectenotoxin-2, yessotoxin and 13-desmethylspirolide C. The homogenate was then freeze-dried, milled and bottled in aliquots suitable for distribution and analysis. The moisture content and particle size distribution were measured, and determined to be appropriate. A preliminary toxin analysis of the final material showed a comprehensive toxin profile.  相似文献   

2.
Azaspiracids (AZAs) are an important group of regulated lipophilic biotoxins that cause shellfish poisoning. Currently, the only widely available analytical method for quantitation of AZAs is liquid chromatography-mass spectrometry (LC-MS). Alternative methods for AZA analysis are needed for detailed characterization work required in the preparation of certified reference materials (CRMs) and by laboratories not equipped with LC-MS. Chemical derivatization of the amine and carboxyl groups on AZAs was investigated for the purpose of facilitating analysis by LC with fluorescence detection (FLD). Experiments towards chemical modification of AZA1 at the amine achieved only limited success. Derivatization of the carboxyl group, on the other hand, proved successful using the 9-anthryldiazomethane (ADAM) method previously applied to the okadaic acid (OA) group toxins. Extraction and clean-up methods were investigated for shellfish tissue samples and a post-reaction solid phase extraction procedure was developed for the AZA ADAM derivatives. Chromatographic separations were developed for the LC-FLD analysis of derivatized AZAs alone or in the presence of other derivatized toxins. This new analytical method for analysis of AZAs enabled verification of AZA1-3 concentrations in recently certified reference materials. The method demonstrated good linearity, repeatability and accuracy showing its potential as an alternative to LC-MS for measurement of AZAs.  相似文献   

3.
A candidate certified reference material (CRM) for multiple shellfish toxins (domoic acid, okadaic acid and dinophysistoxins, pectenotoxins, yessotoxin, azaspiracids and spirolides) has been prepared as a freeze-dried powder from mussel tissues (Mytilus edulis). Along with the certified values, the most important characteristics for a reference material to be fit-for-purpose are homogeneity and stability. Acceptable between-bottle homogeneity was found for this CRM. Within-bottle homogeneity was assessed using domoic acid, and it was shown that repeated subsampling of the CRM can be performed precisely down to 0.35 g. Both short- and long-term stability studies carried out under isochronous conditions demonstrated excellent stability of the various toxins present in the material. While degradation of some analytes was observed at +60°C in short-term studies, it was determined that shipping at ambient temperature is adequate. No instability was detected in long-term stability studies, and it was shown that the material can be held at +18°C safely for up to 1 year. To guarantee stability of the CRM over its lifetime the stock will be maintained at −20°C. The results of the homogeneity and stability testing show that CRM–FDMT1 is appropriate for its intended use in quality assurance and quality control of shellfish toxin analysis methods.  相似文献   

4.
Azaspiracids (AZAs) are a group of polyether toxins that cause food poisoning in humans. These toxins, produced by marine dinoflagellates, accumulate in filter-feeding shellfish, especially mussels. Sensitive liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS(n)) methods have been developed for the determination of the major AZAs and their hydroxyl analogues. These methods, utilising both chromatographic and mass resolution, were applied for the determination of 10 AZAs in mussels (Mytilus edulis). An optimised isocratic reversed phase method (3 microm Luna-2 C18 column) separated 10 azaspiracids using acetonitrile/water (46:54, v/v) containing 0.05% trifluoroacetic acid (TFA) and 0.004% ammonium acetate in 55 min. Analyte determination using MS3 involved trapping and fragmentation of the [M + H]+ and [M + H - H2O]+ ions with detection of the [M + H - 2H2O]+ ion for each AZA. Linear calibrations were obtained for AZA1, using spiked shellfish extracts, in the range 0.05-1.00 microg/ml (r2 = 0.997) with a detection limit of 5 pg (signal : noise = 3). The major fragmentation pathways in hydroxylated azaspiracids were elucidated using hydrogen/deuterium (H/D) exchange experiments. An LC-MS3 method was developed using unique parent ions and product ions, [M + H - H2O - CgH10O2R1R3]+, that involved fragmentation of the A-ring. This facilitated the discrimination between 10 azapiracids, AZA1-10. Thus, this rapid LC-MS3 method did not require complete chromatographic resolution and the run-time of 7 min had detection limits better than 20 pg for each toxin.  相似文献   

5.
Method validation was conducted for an enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins, known to give amnesic shellfish poisoning (ASP) symptoms, in shellfish. The calibration curve range of the assay is approximately 10-260 pg/mL, with a dynamic working range for DA toxins in shellfish from 0.01 to at least 250 mg/kg. The ASP ELISA showed no significant cross-reactivity to structural analogs, and proved to be robust to deliberate alterations of the optimal running conditions. The shellfish matrix effects observed with mussels, oysters, and scallops were eliminated by diluting shellfish extracts 1:200 prior to analysis, leading to a limit of detection at 0.003 mg/kg. Thirteen blank shellfish homogenates were spiked with certified mussel material containing DA to levels in the range of 0.1-25 mg DA/kg, and analyzed in quadruplicate on 3 different days. The relative standard deviation (RSD) under intra-assay repeatability conditions ranged from 6.5 to 13.1%, and under interassay repeatability conditions the RSD ranged from 5.7 to 13.4%, with a mean value of 9.3%. The recoveries ranged from 85.5 to 106.6%, with a mean recovery of 102.2%. A method comparison was conducted with liquid chromatography with ultraviolet detection, using naturally contaminated scallop samples (n = 27) with DA levels at 0-244 mg/kg. The overall correlation coefficient was 0.960 and the slope of the regression was 1.218, indicating a good agreement between the methods.  相似文献   

6.
建立了液相色谱-串联质谱分析贝类组织中米氏裸甲藻(GYM)贝毒素、螺环内酯毒素(SPX1)、大田软骨酸(OA)贝毒素、蛤毒素(PTX2)、原多甲藻酸(AZA1)贝毒素的方法.用甲醇-水(4: 1, V/V)溶液对贝类组织中GYM, SPX1, OA, PTX2和AZA1进行提取,MAX阴离子交换柱净化后,采用液相色谱分离,除OA以负离子选择反应监测外,GYM, SPX1, PTX2和AZA1以电喷雾离子源正离子选择反应监测模式进行质谱分析.5种脂溶性贝毒素GYM, SPX1, OA, PTX2和AZA1在各自相应浓度范围内线性良好,相关系数>0.99.扇贝闭壳肌空白样品添加5种贝毒素的提取率均为78.6%~94.4%(n=6); 精密度(RSD)为6.8%~14.9%.贝类组织中5种贝毒素GYM, SPX1, OA, PTX2和AZA1的检出限分别为0.10, 0.21, 2.00, 0.32和0.04 μg/kg.  相似文献   

7.
The frequency of occurrence and intensity of harmful algal blooms (HABs) appear to be increasing on a global scale. Consequently, methods were established for the evaluation of possible hazards caused by the enrichment of algal toxins in the marine food chain. Different clinical types of algae-related poisoning have attracted scientific attention: paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP). In several countries fish specialties are consumed which may be contaminated with algal toxins typical for the respective region (e.g., ciguatera and tetrodotoxins). Bioassays are common methods for the determination of marine biotoxins. However, biological tests are not completely satisfactory, due to the low sensitivity and the absence of specialized variations. Moreover, there is growing resistance against the use of animal experiments. Therefore, many efforts have been made to determine algal toxins with chemical methods. In this context LC-MS methods replaced HPLC methods with optical detectors, allowing both effective seafood control and monitoring of phytoplankton in terms of the different groups of marine biotoxins.  相似文献   

8.
A liquid chromatography/mass spectrometry (LC/MS) method for amnesic shellfish poisoning toxins in shellfish was developed and validated. Tissue homogenate (4 g) was extracted with 16 mL methanol-water (1 + 1, v/v). Dilution into acetonitrile-water (1 + 9, v/v) was followed by C18 solid-phase extraction cleanup. Domoic acid (DA) and epi-domoic acid were determined by LC/MS/MS with electrospray ionization and multiple reaction monitoring. External calibration was performed with dilutions of a certified reference standard. Advantages of this method include speed, lower detection limits, and a very high degree of specificity. The LC/MS response was highly linear, and there were no significant interferences to the determination of DA. Formal method validation was performed on 4 shellfish species. Fortification studies gave recoveries (mean +/- SD; n = 24) of 93 +/- 14% at 1 mg/kg, and 93.3 +/- 7.6% at 20 mg/kg over all the species. Analysis of a mussel certified reference material showed the bias as < 5%. The limits of detection and quantitation were 0.15 and 0.5 mg/kg, respectively. Routine application of the method over 4 months gave a recovery for the QC sample (1 mg/kg fortified blank mussel homogenate) run with each batch of 88.9 +/- 5.5% (mean +/- SD; n = 37). The total uncertainty of measurement results were estimated as 0.12 (12%) at 0.25-5 mg/kg and 0.079 (7.9%) at 5-50 mg/kg. The major contribution to the uncertainty was the repeatability of the LC/MS determination, probably arising from subtle matrix effects.  相似文献   

9.
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. ‘an artificial mouse’. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.  相似文献   

10.
Successive unexplained shellfish toxicity events have been observed in Arcachon Bay (Atlantic coast, France) since 2005. The positive mouse bioassay (MBA) revealing atypical toxicity did not match the phytoplankton observations or the liquid chromatography-tandem mass spectrometry (LC-MS/MS) investigations used to detect some known lipophilic toxins in shellfish. The use of the three cell lines (Caco2, HepG2, and Neuro2a) allows detection of azaspiracid-1 (AZA1), okadaic acid (OA), or pectenotoxin-2 (PTX2). In this study, we proposed the cell-based assays (CBA) as complementary tools for collecting toxicity data about atypical positive MBA shellfish extracts and tracking their chromatographic fractionation in order to identify toxic compound(s). The present study was intended to investigate the responses of these cell lines to shellfish extracts, which were either control or spiked with AZA1, OA, or PTX2 used as positive controls. Digestive glands of control shellfish were extracted using the procedure of the standard MBA for lipophilic toxins and then tested for their cytotoxic effects in CBA. The same screening strategy previously used with pure lipophilic toxins was conducted for determining the intra- and inter-laboratory variabilities of the responses. Cytotoxicity was induced by control shellfish extracts whatever the cell line used and regardless of the geographical origin of the extracts. Even though the control shellfish extracts demonstrated some toxic effects on the selected cell lines, the extracts spiked with the selected lipophilic toxins were significantly more toxic than the control ones. This study is a crucial step for supporting that cell-based assays can contribute to the detection of the toxic compound(s) responsible for the atypical toxicity observed in Arcachon Bay, and which could also occur at other coastal areas.  相似文献   

11.
Guo M  Tan Z  Wu H  Li Z  Zhai Y 《色谱》2012,30(3):256-261
建立了同时测定贝类中大田软海绵酸(okadaic acid, OA)及其衍生物鳍藻毒素(dinophysistoxin-1, DTX-1)、蛤毒素(pectenotoxin-2, PTX-2)和虾夷扇贝毒素(yessotoxin, YTX)的液相色谱-串联质谱分析方法。样品经甲醇提取,固相萃取柱净化,C18色谱柱分离,经含甲酸和甲酸铵的乙腈-水溶液为流动相梯度洗脱,选择反应监测(SRM)模式检测,正、负离子切换扫描,基质标准校正,外标法定量。结果表明,OA、DTX-1和YTX的线性范围为2.0~200.0 μg/L,定量限(以信噪比(S/N)≥10计)为1.0 μg/kg; PTX-2的线性范围为1.0~100.0 μg/L,定量限为0.5 μg/kg;几种化合物的添加平均回收率为83.1%~105.7%,相对标准偏差(RSD)为3.16%~9.29%。成功应用本法对黄海灵山湾海域采集的贝类样品进行了分析,发现部分样品中含有大田软海绵酸、鳍藻毒素、蛤毒素和虾夷扇贝毒素。  相似文献   

12.
以石墨烯为吸附剂,制作了石墨烯-管尖固相萃取装置,结合液相色谱-串联质谱,建立了一种同时测定贝类中10种脂溶性贝类毒素的方法。实验对提取剂、石墨烯的用量、淋洗剂的种类和用量、洗脱剂的种类和用量等实验参数进行了详细优化。在最优的实验条件下,10种脂溶性贝类毒素在各自相应浓度范围内线性良好,相关系数均大于0.99,方法检出限(LOD)和定量限(LOQ)分别在0.1~1.1 μg/kg和0.3~3.2 μg/kg之间;对阴性牡蛎样品进行3个水平的加标回收实验,10种脂溶性贝类毒素的回收率在72.0%~101.2%之间,相对标准偏差小于15%。结果表明,该方法灵敏度高,操作简单高效,适用于贝类水产品中脂溶性贝类毒素的检测分析。  相似文献   

13.
Summary Domoic acid was recognized recently [1, 2] to be a marine neurotoxin associated with shellfish harvested or cultured for use as human food. Evidence about the occurrence of domoic acid and its importance to shellfish industries is reviewed. The preparation and certification of two reference materials for the determination of domoic acid, an instrument calibration solution (DACS-1, released by the Marine Analytical Chemistry Standards Program [MACSP] in May, 1989), and a tissue reference material (MUS-1, homogenized soft tissues of Mytilus edulis, released by the MACSP in August, 1989) are described. We believe these are the first certified standards or reference materials to be available for the determination of shellfish toxins, a problem of increasing importance to aquaculturists and the seafood industry, as well as to agencies concerned with the safety of food. The tissue homogenate preparation techniques we have developed and used may be of general interest for the preparation of other tissue reference materials for the determination of other organic compounds, since the sealed, fluid homogenate samples seem acceptably stable without being continuously frozen or refrigerated.NRCC No. 31925  相似文献   

14.
Lipophilic marine toxins are produced by harmful microalgae and can accumulate in edible filter feeders such as shellfish, leading to an introduction of toxins into the human food chain, causing different poisoning effects. During the last years, analytical methods, based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), have been consolidated by interlaboratory validations. However, the main drawback of LC-MS/MS methods remains the limited number of compounds that can be analyzed in a single run. Due to the targeted nature of these methods, only known toxins, previously considered during method optimization, will be detected. Therefore in this study, a method based on ultra-high-performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry (UHPLC-HR-Orbitrap MS) was developed. Its quantitative performance was evaluated for confirmatory analysis of regulated lipophilic marine toxins in shellfish flesh according to Commission Decision 2002/657/EC. Okadaic acid (OA), dinophysistoxin-1 (DTX-1), pectenotoxin-2 (PTX-2), azaspiracid-1 (AZA-1), yessotoxin (YTX), and 13-desmethyl spirolide C (SPX-1) were quantified using matrix-matched calibration curves (MMS). For all compounds, the reproducibility ranged from 2.9 to 4.9 %, repeatability from 2.9 to 4.9 %, and recoveries from 82.9 to 113 % at the three different spiked levels. In addition, confirmatory identification of the compounds was effectively performed by the presence of a second diagnostic ion (13C). In conclusion, UHPLC-HR-Orbitrap MS permitted more accurate and faster detection of the target toxins than previously described LC-MS/MS methods. Furthermore, HRMS allows to retrospectively screen for many analogues and metabolites using its full-scan capabilities but also untargeted screening through the use of metabolomics software. Figure
?  相似文献   

15.
An evaluation of the feasibility of liquid chromatography-mass spectrometry (LC-MS) with atmospheric pressure ionization was made for quantitation of four diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops. When LC-MS was applied to the analysis of scallop extracts, large signal suppressions were observed due to coeluting substances from the column. To compensate for these matrix signal suppressions, the standard addition method was applied. First, the sample was analyzed and then the sample involving the addition of calibration standards is analyzed. Although this method requires two LC-MS runs per analysis, effective correction of quantitative errors was found.  相似文献   

16.
A collaborative study was conducted on the Biosense amnesic shellfish poisoning (ASP) enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins in shellfish in order to obtain interlaboratory validation data for the method. In addition, a method comparison study was performed to evaluate the ASP ELISA as an alternative to the current liquid chromatography (LC) reference method for DA determination. The study material comprised 16 shellfish samples, including blue mussels, Pacific oysters, and king scallops, spiked with contaminated mussel homogenates to contain 0.1-20 mg DA/kg shellfish flesh. The shellfish samples were extracted with 50% aqueous methanol, and the supernatants were directly analyzed. Sixteen participating laboratories in 10 countries reported data from the ASP ELISA, and 4 of these laboratories also reported data from instrumental LC analysis. The participating laboratories achieved interlaboratory precision estimates for the 8 Youden paired shellfish samples in the range of 10-20% for RSD(r) (mean 14.8 +/- 4%), and 13-29% for RSDR (mean 22.7 +/- 6%). The precision estimates for the ELISA data did not show a strong dependence on the DA concentration in the study samples, and the overall precision achieved was within the acceptable range of the Horwitz guideline with HorRat values ranging from 1.1 to 2.4 (mean HorRat 1.7 +/- 0.5). The analysis of shellfish samples spiked with certified reference material (CRM)-ASP-MUS-b gave recoveries in the range of 88-122%, with an average recovery of 104 +/- 10%. The estimate on method accuracy was supported by a correlation slope of 1.015 (R2 = 0.992) for the determined versus the expected DA values. Furthermore, the correlation of the ASP ELISA results with those for the instrumental LC analyses of the same sample extracts gave a correlation slope of 1.29 (R2 = 0.984). This indicates some overestimation of DA levels in shellfish by the ELISA, but it is also a result of apparent low recoveries for the LC methods. This interlaboratory study demonstrates that the ASP ELISA is suitable for the routine determination and monitoring of DA toxins in shellfish, and that it offers a rapid and cost-effective methodology with high sample throughput.  相似文献   

17.
Sixteen laboratories participated in a collaborative study to evaluate method performance parameters of a liquid chromatographic method of analysis for paralytic shellfish toxins (PST) in blue mussels (Mytilus edulis), soft shell clams (Mya arenaria), sea scallops (Placopectin magellanicus), and American oysters (Crassostrea virginicus). The specific analogs tested included saxitoxin, neosaxitoxin, gonyautoxins-1 to -5, decarbamoyl-gonyautoxins-2 and -3, decarbamoyl-saxitoxin, and N-sulfocarbamoyl-gonyautoxin-2 and -3. This instrumental technique has been developed as a replacement for the current AOAC biological method (AOAC Official Method 959.08) and an alternative to the pre-column oxidation LC method (AOAC Official Method 2005.06). The method is based on reversed-phase liquid chromatography with post-column oxidation and fluorescence detection (excitation 330 nm and emission 390 nm). The shellfish samples used in the study were prepared from the edible tissues of clams, mussels, oysters, and scallops to contain concentrations of PST representative of low, medium, and high toxicities and with varying profiles of individual toxins. These concentrations are approximately equivalent to 1/2 maximum level (ML), ML, or 2xML established by regulatory authorities (0.40, 0.80, and 1.60 mg STX diHCl eq/kg, respectively). Recovery for the individual toxins ranged from 104 to 127%, and recovery of total toxin averaged 116%. Horwitz Ratio (HorRat) values for individual toxins in the materials included in the study were generally within the desired range of 0.3 to 2.0. For the estimation of total toxicity in the test materials, the reproducibility relative standard deviation ranged from 4.6 to 20%. A bridging study comparing the results from the study participants using the post-column oxidation (PCOX) method with the results obtained in the study director's laboratory on the same test materials using the accepted reference method, the mouse bioassay (MBA; AOAC Official Method 959.08), showed that the average ratio of results obtained from the two methods was 1.0. A good match of values was also achieved with a new certified reference material. The results from this study demonstrated that the PCOX method is a suitable method of analysis for PST in shellfish tissue and provides both an estimate of total toxicity, equivalent to that determined using the MBAAOAC Official Method 959.08, and a detailed profile of the individual toxin present in the sample.  相似文献   

18.
An isotope-dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS) measurement procedure was developed to accurately quantify amino acid concentrations in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 2389a—amino acids in 0.1 mol/L hydrochloric acid. Seventeen amino acids were quantified using selected reaction monitoring on a triple quadrupole mass spectrometer. LC-MS/MS results were compared to gravimetric measurements from the preparation of SRM 2389a—a reference material developed at NIST and intended for use in intra-laboratory calibrations and quality control. Quantitative mass spectrometry results and gravimetric values were statistically combined into NIST-certified mass fraction values with associated uncertainty estimates. Coefficients of variation (CV) for the repeatability of the LC-MS/MS measurements among amino acids ranged from 0.33% to 2.7% with an average CV of 1.2%. Average relative expanded uncertainty of the certified values including Types A and B uncertainties was 3.5%. Mean accuracy of the LC-MS/MS measurements with gravimetric preparation values agreed to within |1.1|% for all amino acids. NIST SRM 2389a will be available for characterization of routine methods for amino acid analysis and serves as a standard for higher-order measurement traceability. This is the first time an ID LC-MS/MS methodology has been applied for quantifying amino acids in a NIST SRM material.  相似文献   

19.
Marine algal toxins of the okadaic acid group can occur as fatty acid esters in blue mussels, and are commonly determined indirectly by transformation to their parent toxins by alkaline hydrolysis. Some data are available regarding the identity of the fatty acid esters, mainly of palmitic acid (16:0) derivatives of okadaic acid (OA), dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2). Other fatty acid derivatives have been described, but with limited mass spectral data. In this paper, the mass spectral characterization of the [M-H](-) and [M+Na](+) ions of 16 fatty acid derivatives of each of OA, DTX1 and DTX2 is presented. The characteristic fragmentation of [M+Na](+) ions of OA analogues provided a useful tool for identifying these, and has not been described previously. In addition, a set of negative ion multiple reaction monitoring (MRM) methods was developed for direct determination of 16 fatty acid esters of OA, 16 fatty acid esters of DTX1 and 16 fatty acid esters of DTX2 in shellfish extracts. The MRM methods were employed to study the profiles of fatty acid esters of OA analogues in blue mussels and to compare these with fatty acid ester profiles reported for other groups of marine algal toxins.  相似文献   

20.
Nitroimidazoles have been applied in the past to poultry and pigs to treat protozoan diseases and to combat bacterial infections, but due to adverse health effects their use in food-producing animals has meanwhile been banned in the EU. The request for a certified reference material in a representative matrix was stipulated by the responsible Community Reference Laboratory and is underpinned by the need to improve the accuracy and comparability of measurement data and to establish metrological traceability of analytical results. The Institute for Reference Materials and Measurements (IRMM) has responded to this demand by developing and producing a new certified matrix reference material, ERM-BB124. This incurred lyophilised pork meat material was certified according to ISO guides 34 and 35 for the mass fractions of six nitroimidazole compounds. Processing of the frozen muscle tissue to the final material was accomplished by application of cutting, freeze-drying, mixing and milling techniques. Homogeneity and stability measurements were performed using liquid chromatography tandem mass spectrometry. The relative standard uncertainty due to possible heterogeneity showed to be below 1.8% for all analytes. Potential degradation during transport and storage was assessed by isochronous stability studies. No significant instability was detected at a storage temperature of −20 °C for a shelf-life of 2 years. The certified mass fraction values were assigned upon evaluation of the data acquired in an international laboratory inter-comparison involving 12 expert laboratories using different sample preparation procedures, but exclusively LC-MS/MS methods. Relative standard uncertainty contributions for the characterisation (between-lab variation of mean values) were found to be between 1.6 and 4.8%. Certified values for five analytes were in the range of 0.7 to 6.2 μg kg−1, with expanded relative uncertainties ranging between 7 and 14%. Dimetridazole could be certified as “<0.25 μg kg−1 with a probability of 95%”. All values are traceable to the International System of Units (SI). The material is intended to be used for method validation purposes (including trueness estimation) and for method performance assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号