首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autoignition behaviour of hydrogen in a turbulent co-flow of heated air at atmospheric pressures was examined experimentally. Turbulent flows of air, with temperatures up to 1015 K and velocities up to 35 m/s, were set up in an optically accessible tube of circular cross-section. The fuel, pure or diluted with nitrogen, was continuously injected along the centreline of the tube, with velocities equal to or larger than those of the air, and temperatures that were lower. The fuel mixing patterns hence obtained were akin to diffusion from a point source or to an axisymmetric jet within a co-flow. For a relatively wide range of temperatures and velocities, a statistically steady condition of randomly occurring autoignition kernels was observed, whose axial location was measured by hydroxyl radical chemiluminescence. The probability density function of autoignition location was sharp enough to allow the accurate determination of a minimum autoignition length and smooth enough to allow the mean and variance to be calculated. It was found that both autoignition lengths increased with the air velocity and decreased with the air temperature, as expected. An estimate of the residence time up to autoignition showed that the autoignition delay times increased with the air velocity for the same temperature, suggesting a delaying effect of the turbulence on autoignition. The connection between these findings and previous experimental and direct numerical simulation studies is discussed.  相似文献   

2.
Boundary layers are omnipresent in fundamental kinetic experimental facilities and practical combustion engines, which can cause ambiguity and misleading results in kinetic target acquisition and even abnormal engine combustion. In this paper, using n-heptane as a representative large hydrocarbon fuel exhibiting pronounced low-temperature chemistry (LTC), two-dimensional numerical simulation is conducted to resolve the transient autoignition phenomena affected by a boundary layer. We focus on the ignition characteristics and the subsequent combustion mode evolution of a hot combustible mixture flowing over a colder flat plate in an isobaric environment. For cases with autoignition occurring within the boundary layer, similarity is observed in the first-stage ignition as manifested by a constant temperature at all locations. The first-stage ignition is found to be rarely affected by heat and radical loss within the boundary layer. While for the main ignition event, an obvious dependence of ignition process on boundary layer thickness is identified, where the thermal-chemical process exhibits similarity at locations with similar boundary layer thickness, and the main ignition tends to first occur within the boundary layer at the domain end and generates a C-shape reaction front. It is found that sequential spontaneous autoignition is the dominant subsequent combustion mode at high-pressure conditions. At low to intermediate pressures, auto-ignition assisted flame propagation is nevertheless the dominant mode for combustion evolution. This research identifies novel features of autoignition and the subsequent combustion mode evolution affected by a cold, fully developed boundary layer, and provides useful guidance to the interpretation of abnormal combustion and combustion mode evolution in boundary layer flows.  相似文献   

3.
In this study, a direct numerical simulation based on compressible flow dynamics has been applied to the autoignition and extinction of a high-pressure hydrogen jet spouting from a tube. The diameter of the tube is 4.8 mm. The length of the tube is 71 mm. At the inlet, pressure is set at 3.6, 5.3 and 21.1 MPa, and temperature is set at 300 K for all cases. To explore the autoignition of hydrogen jet, two-dimensional axisymmetric Navier–Stokes equations with a detailed chemical kinetics and rigorous transport properties have been employed. The hydrogen jet through the tube is choked. The numerical results show that the high-pressure hydrogen jet produces a semi-spherical shock wave in the ambient air at the early time of jetting. The shock wave heats up the air to a high temperature and causes the autoignition of the hydrogen and air mixture in the tube as well as at the tube exit.  相似文献   

4.
The impact of turbulence on the autoignition of a diluted hydrogen jet in a hot co-flow of air is studied numerically. The LES combustion model used is successfully validated against experimental measurements and 3D DNS. Parametric studies are then carried out by separately varying turbulent intensity and integral length scale in the co-flow, while keeping all other boundary conditions unchanged. It is found that the impact of turbulence on the location of autoignition is non-trivial. For weak to mild turbulence, with a turbulent time scale larger than the minimum ignition delay time, autoignition is facilitated by increased turbulence. This is due to enhanced mixing between fuel and air, creating larger most reactive mixture fraction regions. On the other hand, for turbulent time scales smaller than the ignition delay time, the increased scalar dissipation rate dominates over the effect of increased most reactive mixture fraction regions, which leads to a rise in the autoignition length. Turbulence–chemistry interaction mechanisms are analysed in order to explain these observations.  相似文献   

5.
Detonation development from a hot spot has been extensively studied, where ignition occurs earlier than that in the surrounding mixtures. It has also been reported that a cool spot can induce detonation for large hydrocarbon fuels with Negative Temperature Coefficient (NTC) behavior, since ignition could happen earlier at lower temperatures. In this work we find that even for hydrogen/air mixtures without NTC behaviors, a cold wall can still initiate and promote detonation. End-wall reflection of the pressure wave and wall heat loss introduce an exothermic center outside the boundary layer, and then autoignitive reaction fronts on both sides may evolve into detonation waves. The right branch can be further strengthened by appropriate temperature gradient near the cold wall, and exhibits different dynamics at various initial conditions. The small excitation time and the large diffusivity of hydrogen provide the possibility for detonation development within the limited space between the autoignition kernel and the cold wall. Moreover, detonation may also develop near the flame front, which may or may not co-exist with detonation waves from the cold wall. Correspondingly, wall heat flux evolution exhibits different responses to detailed dynamic structures. Finally, we propose a regime diagram describing different combustion modes including normal flame, autoignition, and detonation from the wall and/or the reaction front. The boundary of normal flame regime qualitatively agrees with the prediction by the Livengood-Wu Integral method, while the detonation development from both the end wall and the reaction front observes Zel'dovich mechanism. Compared to hydrocarbons, hydrogen is resistant to knock onset but it is more prone to superknock development. The latter mode becomes more destructive in the presence of wall heat loss. This study isolates and identifies the role of wall heat loss on a potential mechanism for superknock development in hydrogen-fueled spark-ignition engines.  相似文献   

6.
为了克服时域有限差分算法中卷积完全匹配层对消逝波吸收效果差的缺点,提出一种在卷积完全匹配层后添加特殊吸收层的方法.在不增加物体与吸收层内层距离的情况下,通过调节特殊吸收层中两个衰减因子,使其为常数,并令吸收因子逐层从1增加到10,来增强吸收层对消逝波的吸收性能.平面波垂直入射到单层光子晶体的算例表明,添加了特殊吸收层的吸收边界在与散射体相距5个网格的情况下仍能够保持计算结果收敛,而传统的吸收边界则需要相距80个网格才能保证结果收敛,说明该方法提高了对消逝波的吸收性能.进一步在结构中采用此吸收边界来计算多层光子晶体的传输特性曲线,并将其与常规方法计算所得结果做比较,两种结果吻合较好.数值算例验证了该方法的有效性和正确性.  相似文献   

7.
The development of advanced boosted internal combustion engines (ICEs) is constrained by super-knock which is closely associated with end gas autoignition and detonation development. The present study numerically investigates the transient autoignition and detonation development processes under engine-relevant conditions for primary reference fuel (PRF) consisting of n-heptane and isooctane. The effects of PRF composition are systematically examined. By considering the transient local sound speed rather than its initial value, a new non-dimensional parameter is proposed to assess the transient chemical-acoustic interaction and to quantify the autoignition modes. Two detonation sub-modes, normal and over-driven detonation, are identified and the corresponding mechanisms are interpreted. For the over-driven detonation, there exist two developing regimes with weak/strong chemical-acoustic coupling and slow/rapid pressure enhancement. It is found that the maximum pressure caused by autoignition decreases with the blending ratio of isooctane, mainly due to the increase in excitation time. Besides, the strongest detonation induced by hot spot usually occurs within the over-driven detonation sub-regime. Its condition can be well quantified by the new non-dimensional parameter proposed in work and its strength is determined by the ratio of hot spot acoustic time to excitation time. The deviation of transient autoignition front propagation from prediction based on homogenous ignition is mainly attributed to the non-uniform compression effect caused by gradually enhanced pressure wave, while the influence of heat conduction and mass diffusion is negligible. The initial expansion stage dominating the induction period of local autoignition is greatly influenced by the compression of pressure wave. Therefore, the continuously enhanced pressure wave non-uniformly changes the local ignition delay (i.e. reduces its spatial gradient) within the hot spot and thereby accelerates the autoignition front propagation. The relationship among the parameters quantifying the detonation propensity is assessed and interpreted. The present study provides helpful understanding of detonation development under engine conditions.  相似文献   

8.
A novel method for calculation of Hele-Shaw flows with receding free boundaries is presented. The method is applied to flows with suction from a point sink and to flow in a channel with parallel walls. In each case the unknown fluid region is mapped conformally onto the unit disc, the free boundary being mapped onto the unit circle. This mapping, which is a function of position and time, is calculated numerically at points on the unit circle using a version of the boundary integral method. The free boundary is thus found without explicit calculation of the pressure at internal points, and the computation times are much less than those for other numerical methods for this problem. Numerical results are compared with explicit analytic solutions for several test problems.  相似文献   

9.
The advancement of highly boosted internal combustion engines (ICEs) with high thermal efficiency is mainly constrained by knock and super-knock, respectively, due to the end gas autoignition and detonation development. The pressure wave propagation and reflection in a small confined space may strongly interact with local end gas autoignition, leading to combustion characteristics different from those in a large chamber or open space. The present study investigates the transient autoignition process in an iso-octane/air mixture inside a closed chamber under engine-relevant conditions. The emphasis is given to the assessment of effects of the pressure wave-wall reflection and the mechanism of extremely strong pressure oscillation typical for super-knock. It is found that the hot spot induced autoignition in a closed chamber can be greatly affected by shock/pressure wave reflection from the end wall. Different autoignition modes respectively from the hot spot and the end wall reflection are identified. A non-dimensional parameter quantifying the interplay between different length and time scales is introduced, which helps to identify different autoignition regimes including detonation development near the end wall. It is shown that detonation development from the hot spot may cause super-knock with devastating pressure oscillation. However, the detonation development from the end wall can hardly produce pressure oscillation strong enough for the super-knock. The obtained results provide a fundamental insight into the knocking mechanism in engines under highly boosted conditions.  相似文献   

10.
余庆  张辉  马丹妮 《强激光与粒子束》2021,33(7):075001-1-075001-7
以能量平衡方程为基础,采用不同的电导率唯象模型描述了液相放电等离子体圆柱形通道特性,得到了通道内半径、温度、电阻、电流和耗散能量随时间的变化关系,还给出了距离放电间隙中心一定距离处的冲击波压力变化,并与前人利用等离子体通道球状模型计算得到的结果进行了比较。结果表明:把等离子体通道看成球状和看成圆柱状在描述通道压力和通道半径时差异显著,而在描述其他物理特性时差别不大;三种电导率模型在描述等离子体通道物理特性时,变化趋势大体相同,而在描述激波特性时,电导率模型σ2更符合实际;通过对比电学参数与压力参数的变化,就可以在实验中根据实验数据以及具体的研究问题进行模型的适用性选择。  相似文献   

11.
本文采用高阶离散格式和详细动力学模型模拟了高压CH4/H2泄漏自燃过程。结果表明高压H2泄漏自燃具有以下特性:H2/空气间高压差会产生稀疏波、激波和燃料/空气接触断面等流动特征;高压H2射流前端的空气温度在0.5μs内可升至1000 K以上;泄漏着火起始于贫燃区;着火后,H2/空气扩散层内部存在多个火焰区域。对比不同混合水平下CH4/H2的泄漏自燃过程则发现,CH4的加入极大地提升了高压储氢安全性。CH4掺混抑制泄漏自燃的机制体现在三个方面:致使压缩空气的温升下降;降低燃料整体活性,尤其是H自由基的积累速率减缓;降低火焰锋面处的达姆科勒数,加剧自由基运输损失。本研究表明,向高压H2中掺混高摩尔质量、低化学活性的其他气体是降低自燃风险的一种有效手段。  相似文献   

12.
湍流边界层噪声是飞机巡航过程中的主要外部噪声源,对舱内噪声水平的影响尤为重要。因此,对飞机机体表面湍流边界层噪声的研究具有重要意义。本文通过试验获得了某型民机巡航过程中的湍流边界层噪声,试飞工况为3500ft/0.78、3500ft/0.7、2500ft/0.67、1500ft/0.66。对实测数据进行分析,发现湍流边界层噪声与动压、边界层厚度等参数有关。同时,利用计算流体力学的方法得到了飞机机体表面的压力分布,并分析了压力梯度对湍流边界层噪声的影响。最后,基于工程预测方法对湍流边界层噪声进行了预测,对于不存在逆压梯度的区域,预测结果与试验结果吻合较好,仅部分频段存在一定偏差。通过对模型的参数进行优化,改善了预测结果。  相似文献   

13.
Boundary layer effects on an acoustic field in a unidirectional flow with transverse shear are studied. The acoustic pressure variation in the direction normal to that of the flow is governed in the boundary layer by a second order differential equation. The problem in the boundary layer is reduced from a two point boundary value problem to a one point boundary value problem by transforming the governing equation into the Riccati equation. The Riccati equation is easily integrated with standard numerical procedures. The integration process yields the effective admittance of the wall-boundary layer combination. The acoustic field in the uniform flow is then determined for this effective admittance. Further complications imposed by the boundary layer are thus eliminated. The simplicity of the technique allows calculation of the propagation and decay constants in a circular duct over a wide range of parameters and duct modes.  相似文献   

14.
This study explores the effect of heat release on the growth of the shear layer vortical structures in a reacting jet in crossflow. Jets composed of mixtures of hydrogen, helium and nitrogen were used to independently vary the momentum flux ratio (J), jet to crossflow density ratio (S) and heat release. Velocity fields were obtained from 10?kHz high-speed stereoscopic particle image velocimetry (SPIV) and regions of elevated temperature/combustion products from simultaneous OH planar laser induced fluorescence (OH-PLIF). The shear layer vortices (SLV) originating from instabilities in the windward and leeward shear layers were identified using vortex identification indicator functions in order to track their spatial location and strength. The results show that the asymmetries in shear layer strength between the windward and leeward shear layers are dependent primarily on J, for both reacting and non-reacting flow-fields. The SLV growth rate dependencies on J and S is found to match trends noted by previous studies for non-reacting jets, where SLV growth rates increase with degree of global instability of the JICF. Heat release is also shown to suppress the SLV growth rates relative to non-reacting cases with the same jet parameters. Related to this point, the degree of lifting of the flame also has a significant impact on SLV growth. As flame lifting is directly related to autoignition times, this point shows strong coupling between kinetic rates and jet hydrodynamic stability.  相似文献   

15.
水中脉冲放电等离子体通道特性及气泡破裂过程   总被引:4,自引:0,他引:4       下载免费PDF全文
卢新培  潘垣  张寒虹 《物理学报》2002,51(8):1768-1772
利用高速摄影法对水中放电等离子体通道的边界层进行了研究,结果表明,当输入到单位长度通道内的功率密度较小时,通道边界存在较厚的过渡层,其亮度明显小于通道中间部分.根据等离子体通道的高速阴影照片指出该通道沿轴向具有非均匀性.另外,还给出了等离子体气泡最后破裂时的高速阴影照片,并对气泡破裂过程作了初步的探讨 关键词: 水中放电 等离子体  相似文献   

16.
系统电磁脉冲边界层准稳态特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 对黑体谱脉冲X射线入射到系统材料上发射的光电子的行为及其准稳态成立的条件进行讨论,研究了系统电磁脉冲(SGEMP)边界层中光电子参数和电场的准稳态特性,给出的公式,可以方便地获得SGEMP边界层的主要参数,如电子密度、电子分布、表面电场及其分布等。最后给出了一个计算实例。  相似文献   

17.
A predictive simulation of the autoignition process of non-premixed methane in a turbulent jet configuration was performed. Closure for the chemical source-term was obtained using Conditional Source-term Estimation with Laminar Flamelet Decomposition (CSE-LFD). The ambient oxidizer conditions – the high pressure and moderate temperatures characteristic of compression ignition engines – were chosen with the intent to validate the combustion model used under engine-relevant conditions. Validation was obtained by comparison of the predicted ignition delay to experimental results obtained from a shock-tube facility at several initial temperatures. Overall, the combination of full chemistry that has been carefully tuned to predict autoignition of premixed methane–air mixtures under similar temperature/pressure conditions with the CSE-LFD model is able to successfully predict the autoignition delay time of methane–air jets well within the scatter in the experimental data.  相似文献   

18.
We consider the amplification of oscillations of the plasma parameters in the emission channel of an electron source with a plasma emitter. The relationship between the modulation level of the emission current and the oscillations of the concentration and potential of the emitting plasma is determined. The amplification of the discharge instabilities is seen to be a function of the ratio of the size of the boundary layer in the channel to the channel radius. The amplification factor is calculated as a function of the emission current and the accelerating voltage. The change in the plasma parameters at the emission boundary for a plasma shift in the channel is taken into account.Tomsk Academy of Control Systems and Electronics. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 73–76, Feburary, 1994.  相似文献   

19.
According to the experimental results and the characteristics of the pressure-sensitive fractured formation, a transient flow model is developed for the deep naturally-fractured reservoirs with different outer boundary conditions. The finite element equations for the model are derived. After generating the unstructured grids in the solution regions, the finite element method is used to calculate the pressure type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity module and the effective radius combined parameter are determined, and the method for calculating the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high temperature and pressure reservoir, the perfect results show that the transient flow model for the pressure-sensitive fractured reservoir in this paper is correct.  相似文献   

20.
The results are presented for numerical modelling of two-dimensional flows with large pressure gradients in a wide range of freestream parameters (M = 2−4, Re 1 = 5−30·106 1/m) and the intensities of perturbing factors. Computations were performed with the use of averaged unsteady Navier — Stokes equations of a viscous heat-conducting gas. The structure of a turbulent boundary layer at its passage through a single shock and a system of shocks of different strengths, which lie at a fixed distance from one another, was investigated numerically. In the case of the boundary layer passage through a system of shocks, the influence of the first interaction on the structure and separation properties of the boundary layer behind the second shock was investigated. The presence of a preliminary shock was shown to improve the boundary layer capability to withstand separation ahead of the secondary interaction region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号