首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(N-isopropylacrylamide)-grafted polystyrene/poly(styrene-co-4-vinylbenzyl N, N-diethyldithiocarbamate) [PNIPAM-grafted PS/P(St-co-VBDC)] hairy particles were synthesized by photo-polymerizing N-isopropylacrylamide monomer in the presence of PS/P(St-co-VBDC) core particles. Here, the VBDC unit, which was incorporated into the surface of core particles by seeded soap-free emulsion copolymerization, acted as a photo-iniferter. By varying the polymerization conditions, a series of hairy particles having different grafting heights and grafting densities was successfully obtained. The hairy particles exhibited well-defined core/shell morphology. PS/P(St-co-VBDC) formed the core which was surrounded by PNIPAM shell. The determination of critical coagulation concentration (CCC) indicated that the hairy particles were stabilized via both electrostatic and steric mechanisms (i.e., electrosteric mechanism) at a temperature lower than LCST of PNIPAM. However, these particles gave much lower CCCs when heated to the temperature higher than LCST, exhibiting temperature-dependent colloidal stability.  相似文献   

2.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

3.
A reliable and efficient route for preparing thermoresponsive hollow microgels based on cross-linked poly(N-isopropyl acrylamide) (PNIPAM) was developed. Firstly, monodisperse thermoresponsive core–shell microspheres composed of a P(styrene (St)-co-NIPAM) core and a cross-linked PNIPAM shell were prepared by seeded emulsion polymerization using P(St-co-NIPAM) particles as seeds. The size of the P(St-co-NIPAM) core can be conveniently tuned by different dosages of sodium dodecyl sulfate. The thickness of the cross-linked PNIPAM shell can be controlled by varying the dosage of NIPAM in the preparation of PNIAPM shell. Then, hollow PNIPAM microgels were obtained by simply dissolving the P(St-co-NIPAM) core with tetrahydrofuran. The core–shell microspheres and the hollow microgels were characterized by transmission electron microscopy, dynamic light scattering, atomic force microscopy, and Fourier-transform infrared spectroscopy.  相似文献   

4.
 Monodispersed poly(styrene-co-acrylonitrile) [P(St-co-AN)] microspheres were prepared by emulsifier-free emulsion copolymerization of St with AN. Fourier transform IR spectroscopy and elemental analysis were used to measure the content of AN in the poly(St-co-AN) microspheres. X-ray photoelectron spectroscopy (XPS) measurements indicated the presence of an AN unit on the surface of the microspheres. The combined results of the elemental analysis and the XPS measurements showed that the copolymer on the surface of the P(St-co-AN) particles was rich in AN compared with that in the interior of the particles. P(St-co-AN)–metal composite particles were prepared by chemical metal deposition. The addition of nickel could improve the distribution of cobalt on surface of the polymer microspheres. The preparation of polymer–bimetal composite particles was tried. Transmission electron microscopy and XRD were used to study the distribution and structure of the deposited metal particles. Received: 30 June 1999/Accepted in revised form: 16 September 1999  相似文献   

5.
Exfoliated montmorillonite (MMT)/poly(N‐isopropylacrylamide) (PNIPAAm) and MMT/poly(N‐isopropylacrylamide‐co‐acrylamide) [P(NIPAAm‐co‐AAm)] nanocomposites were fabricated by soap‐free emulsion polymerization. Interestingly, as the content of MMT was increased from 0 to 10 wt %, the glass transition temperature of MMT/PNIPAAm was decreased from 145 to 122 °C, whereas that of the MMT/P(NIPAAm‐co‐AAm) increased from 95 to 153 °C. Although the lower critical solution temperature (LCST) of 32 °C for the MMT/PNIPAAm nanocomposites in aqueous solutions was slightly increased with the content of MMT, that of the MMT/P(NIPAAm‐co‐AAm) was decreased from 70 to 65 °C. A mechanism that the hydrogen bonds between the amide groups of PNIPAAm were interfered by the exfoliated MMT nano‐platelets for the MMT/PNIPAAm nanocomposites and the preferred absorption of acrylamide units to the MMT nanoplatelets rather than N‐isopropylacrylamide in the MMT/P(NIPAAm‐co‐AAm) nanocomposites was suggested to interpret these unusual transition behavior. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 524–530, 2009  相似文献   

6.
In this work, poly(N‐isopropylacrylamide‐co‐acrylic acid) (poly(NIPAAm‐AA)) copolymer latex particles (microgels) were synthesized by the method of soapless emulsion polymerization. Poly(NIPAAm‐AA) copolymer microgels have the property of being thermosensitive. The concentration of acrylic acid (AA) and crosslinking agent N,N′‐methylenebisacrylamide were important factors to influence the lower critical solution temperature (LCST) of poly(NIPAAm‐AA) microgels. The effects of AA and crosslinking agent on the swelling behavior of poly(NIPAAm‐AA) microgels were also studied. The poly(NIPAAm‐AA) copolymer microgels were then used as a thermosensitive drug carrier to load caffeine. The effects of concentration of AA and crosslinking agent on the control release of caffeine were investigated. How the AA content and crosslinking agent influenced the morphology and LCST of the microgels was discussed in detail. The relationship of morphology, swelling, and control release behavior of these thermosensitive microgels was established. A new scheme was proposed to interpret the control release of the microgels with different morphological structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5734–5741, 2008  相似文献   

7.
Heterogeneous hydrogels were prepared by -ray irradiation of aqueous solutions of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) having various compositions above the lower critical solution temperature. The structures of the poly(N-isopropylacrylamide) (PNIPAAm) gel and poly(NIPAAm-co-AAc) gels in both their highly hydrated and their natural states were observed by environmental scanning electron microscopy. The heterogeneous structures of the homopolymer gel and the copolymer gels whose AAc contents were between 10–50% consisted of interconnected microspheres. In the copolymer gel with a high AAc content, the structure became a largely interconnected one which lacked micro-droplets. The hydrophobic interaction caused by hydrogen bonding between the unionized carboxylic acid groups of AAc and the amide groups of NIPAAm, the rates of polymerization, and the aggregation rates play important roles in the formation of interconnected microsphere gel structures.  相似文献   

8.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

9.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The thermosensitive polyvinyl alcohol-graft-N-isopropylacrylamide–methacrylic acid (PVA-g-NIPAAm–MAc) terpolymer membranes containing carboxyl groups were prepared. The swelling ratios of the membranes were measured at various temperatures. The temperature dependence of the swelling ratios of the terpolymer membranes was different from that of PVA-g-NIPAAm copolymer membranes. The swelling ratios of PVA-g-NIPAAm–MAc (5–15) (wt % in feed) increased with increasing temperature up to 35–38°C, then decreased. However, the swelling ratio of PVA-g-NIPAAm–MAc (30–50) terpolymer membranes did not depend on temperature in the temperature range of 10–48°C. To clarify the swelling behavior of the PVA-g-NIPAAm–MAc terpolymer membranes, the swelling ratios of the PVA-g-NIPAAm–Acrylic acid (AAc) terpolymer membranes, the viscosity, and optical density of various polymer solutions were measured. The different swelling behavior of PVA-g-NIPAAm–MAc (or AAc) terpolymer membranes from that of PVA–NIPAAm copolymer membranes was thought to be due to hydrogen bonding between amide groups in NIPAAm moieties and carboxyl groups in MAc (or AAc) moieties in the terpolymer membranes and the difference of swelling behavior between PVA-g-NIPAAm–MAc and PVA-g-NIPAAm–AAc terpolymer membranes was thought to be brought about by hydrophobic interaction due to methyl groups in PVA-g-NIPAAm–MAc terpolymer membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3097–3106, 1998  相似文献   

11.
阚成友 《高分子科学》2016,34(10):1240-1250
Cationic poly(styrene-co-N,N-dimethylaminoethyl methacrylate) (P(St-co-DMAEMA)) latexes were prepared in the absence of surfactant by using 2,2’ -azobis (2-methylpropionamidine) dihydrochloride (AIBA) as the initiator. The effects of the AIBA concentration, HCl/DMAEMA molar ratio and DMAEMA amount on the emulsion polymerization and the latex properties were investigated. The particle morphology and size, the zeta potential and the amino distribution of the P(St-co-DMAEMA) latexes were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS) and conductometric titration, respectively. Results showed that the emulsion polymerization performed smoothly with high monomer conversion and narrow particle size distribution under the optimized conditions with AIBA concentration of 1 wt%, HCl/DMAEMA molar ratio of 1.2 and DMAEMA content of 5 wt%. The diameter of the dried latex particles decreased and the density of amino groups on the particle surfaces increased with increasing the DMAEMA content. The zeta potential of the P(St-co-DMAEMA) latexes was pH-dependent and the zero point was around at pH 7.2. A facile method was developed to fabricate P(St-co-DMAEMA)/laponite hybrid nanoparticles via electrostatic adsorption, in which the loading capacity of laponite platelets reached 17.7 wt%, and the resultant hybrid nanoparticles showed good thermal stability.  相似文献   

12.
 Poly(styrene-co-methacrylic acid) [P(St-co-MAA)] microspheres were prepared by emulsifier-free emulsion copolymerization of St with MAA. Fourier transform IR spectroscopy and elemental analysis were used to study the change in the content of MAA in the microspheres. The results of X-ray photoelectron spectroscopy measurements indicated the presence of carboxylic functionality on the surface of the microspheres. The P(St-co-MAA) metal composite particles were prepared by chemical metal deposition. Transmission electron microscopy observation and X-ray diffraction measurement were used to study the distribution and structure of the metal particles deposited. Received: 15 September 1999 Accepted: 24 December 1999  相似文献   

13.
Biodegradable cross-linkers acryloyloxyethylaminopolysuccinimide (AEA-PSI) were obtained by microwave irradiation using maleic anhydride as materials. With AEA-PSI cross-linker, cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, thermodynamics stability, and enzymatic degradation properties were investigated. By alternating the NIPAAm/AAc molar ratio, hydrogels were synthesized to have LCST in the vicinity of 37 °C. The LCST of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was significantly influenced by monomer ratio of the NIPAAm/AAc but not by the cross-linking density within the polymer network. The water content of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was more than 90% even at 37 °C, which was controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the cross-linking density. The thermodynamics stability was also characterized by thermogravimetry. In enzymatic degradation studies, breakdown of the AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on the cross-linking density. Submitted to Colloid and Polymer Science, 2007-1-28.  相似文献   

14.
Temperature-sensitive filled poly(N-isopropylacrylamide) (PNIPAAm) gel beads with diameters in the range of millimeters were prepared using the alginate technique. The polymerization and cross-linking reaction of NIPAAm in the presence of inorganic filling particles was performed in spherical networks of Ca-alginate forming interpenetrating networks (IPN). Thermo-sensitive gel beads could be obtained by washing these IPN with EDTA solution. The PNIPAAm gel beads were analyzed by optical methods to observe there swollen diameter in dependence on the temperature. The diameters of the swollen gel beads were in the range of 0.1 - 2 mm. The influence of the monomer to cross-linker ratio (MCR) and the filling materials (ferrofluid, BaTiO3, TiO2, and Ni,) were studied. The phase transition temperature (Tpt) was only weakly influenced by the MCR and the filling material remaining at around 34°C.  相似文献   

15.
A novel thermosensitive poly(N-vinylisobutyramide)(polyNVIBA) hydrogel was prepared by the copolymerization of N-vinylisobutyramide (NVIBA) with butylene-bis-NVA(B-BNVA) as a crosslinker in a high yield. The swelling transition behavior was examined in comparison with poly(N-isopropylacrylamide)(polyNIPAAm) hydrogel. The resulting polyNVIBA hydrogel clearly showed a swelling transion in water at ca. 41°C. To control the transition temperature (Tt) of the gel, crosslinked copolymers of NVIBA and N-vinylacetamide (NVA) were prepared and compared with copolymers of N-isopropylacrylamide(NIPAAm) and NVA. The incorporation of NVA led to a higher swelling transition temperature. Tt of poly(NVIBA-co-NVA) gels was almost the same as those in water-soluble poly(NVIBA-co-NVA). The responses for a swelling transition of polyNVIBA and poly(NVIBA-co-NVA) gels were sharp in comparison to polyNIPAAm gels. PolyNVIBA and poly(NVIBA-co-NVA) gels desorbed 98% of water above Tt. The characteristic and the mechanism of the phase transition on the hydrogels were discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3377–3384, 1997  相似文献   

16.
Conversion versus time curves were measured for poly(N-isopropylacrylamide) microgel latexes prepared by polymerization in water with sodium dodecyl sulfate, SDS. Polymerization rates increased with temperature with methylenebisacrylamide crosslinking monomer consumed faster thanN-isopropylacrylamide. The particle diameter decreased with increasing concentrations of SDS in the polymerization recipe and there was evidence that the rate of polymerization increased somewhat with SDS concentration. Particle formation occurred by homogeneous nucleation as micelles were absent.Comparison of particle size distributions from dynamic light scattering to those from a centrifugal sizer led to the conclusion that larger particles within a specific latex were less swollen with acetonitrile than were the smaller ones. This was interpreted as evidence for the polymer in larger particles having a higher crosslink density. Particle swelling was estimated from swelling ratios defined as the particle volume at 25 °C divided by the volume at 50 °C. In the absence of crosslinking poly(N-isopropylacrylamide) linear chains would disolve at 25 °C. The swelling results indicated that the average crosslink density in the particles decreased with conversion. This was explained by the observation that the methylenebisacrylamide was consumed more quickly and is typical of crosslinking in emulsion polymerization where polymer particles have high polymer concentrations at their birth.  相似文献   

17.
M. Hinge 《Colloid Journal》2007,69(3):342-347
The aim of the performed work is to produce anionic core-shell poly(styrene-co-N-isopropylacrylamide) colloids with an N-isopropylacrylamide (NIPAM) content in the range from 5 to 30 mol %. Different batches of poly(styrene-co-NIPAM) colloids (poly(ST-co-NIPAM) colloids) are produced with varying NIPAM mol %, and the produced poly(ST-co-NIPAM) colloids are characterized by dynamic light scattering and scanning electron microscopy. Results show that the produced colloids have a core-shell morphology with a poly(styrene) core and a poly(NIPAM) shell. The swelling ratio of the produced poly(ST-co-NIPAM) colloids is similar to the swelling ratio found for similar poly(ST-co-NIPAM) colloids produced by the two-step seeded polymerization process. The text was submitted by the author in English.  相似文献   

18.
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with degradable chitosan cross-linkers. Chitosan degradable cross-linkers were synthesized by the acrylation of the amine groups of glucosamine units within chitosan and characterized with 1H NMR. With the chitosan cross-linkers, loosely cross-linked poly(N-isopropylacryamideco-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content and degradation properties were investigated. The chitosan cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and transparent at room temperature. The LCST could be adjusted at 32∼39°C by alternating the feed ratio. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, swelling media, and temperature. All hydrogels with different feeding ratios contained more than 95% water at 25°C in the ultra pure water and phosphate-buffered saline (PBS, pH = 7.4 ± 0.1), and had a prospective swelling in the simulated gastric fluids (SGF, pH = 1.2) > 72.54%. In degradation studies, breakdown of the chitosan cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on the cross-linking density. The chitosan cross-linked P(NIPAAm-co-AAc) hydrogels which can be tailored to create environmentally-responsive artificial extracellular materials have great potential for future use.   相似文献   

19.
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.  相似文献   

20.
PSt种子与“花瓣”形PSt/PAN复合颗粒的制备   总被引:4,自引:0,他引:4  
以过硫酸钾为引发剂,在乙醇/水的混合介质中使苯乙烯进行无皂乳液聚合,得到了单分散亚微米级聚苯乙烯(PSt)微球.用扫描电子显微镜研究了引发剂浓度、单体浓度、反应温度和溶剂组成对PSt微球粒径的影响.结果表明,改变上述条件能明显影响其粒径.以所得单分散聚苯乙烯微球为种子,在丙烯酸单封端聚乙二醇大分子单体存在的条件下,使丙烯腈和少量苯乙烯进行新的无皂种子乳液聚合,在合适的条件下制得到了“花瓣”形的聚合物复合颗粒,为深入探讨这类特殊形态聚合物颗粒的形成机理提供了新的佐证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号