首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

2.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

3.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

4.
采用修饰多层LB膜的方法制备了导电聚合物聚-3,4-乙烯二氧噻吩/二十烷酸(PEDOT:AA)复合层状有序膜, 构筑了一种导电聚合物镶嵌的多层有序膜结构. 将这种导电聚合物有序薄膜沉积于ITO电极表面, 将其作为有机电致发光二极管(OLED)的空穴注入层, 并研究了ITO/(PEDOT:AA)/MEH-PPV/Al器件的性能. 研究结果表明, 与采用聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT:PSS)自组装膜和旋涂膜作为空穴注入层的ITO/(PEDOT:PSS)/MEH-PPV/Al器件相比, 器件的发光效率增加, 起亮电压降低. 我们认为这是由于PEDOT:AA薄膜提供了一种有序层状结构后, 减小了ITO与MEH-PPV间的接触势垒, 改善了空穴载流子注入效率. 进一步的研究表明, 由于PEDOT:AA多层膜间靠较弱的亲水、疏水作用结合, 这种导电多层有序膜的热稳定性与普通LB膜相似, 在较高温度下发生从层状有序态到无序态的变化, 这是导致OLED器件性能发生劣化的主要原因.  相似文献   

5.
In this study, polymeric nanocomposites of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) and functionalized multi-walled carbon nanotubes (MWCNTs) were spin coated on a pre-patterned ITO glass and used as a hole conducting layer in organic photovoltaic cells. The multi-layered ITO/MWCNT-PEDOT:PSS/CuPc/C60/Al devices were fabricated to investigate the current density-voltage characteristics and power conversion efficiency. The power conversion efficiency obtained from the device with a concentration of 1.0 wt% MWCNT in the PEDOT:PSS layer was increased twice as those adopted from device without MWCNT doping in the PEDOT:PSS layer and current density-voltage characteristics was also improved well with incorporation of MWCNTs.  相似文献   

6.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

7.
为了得到绿色单峰发光的聚合物材料, 我们设计并合成了9位取代的二烯丙基芴单体, 在NiCl2的催化下, 合成了可溶的聚芴衍生物, 聚(9,9-二烯丙基芴)(PAF). 较短的烯丙基链既可以增加聚芴的溶解度, 双键的存在又有利于聚芴发生分子间聚集而得到绿光发射的有机电致发光器件(OLED). PAF在溶液和薄膜状态下的荧光峰分别位于403和456 nm的蓝光区域, 而其器件ITO/PEDOT:PSS/PAF/LiF/Al(其中, ITO为氧化铟锡, PEDOT为聚(3,4-乙撑二氧噻吩), PSS为聚苯乙烯磺酸盐)的电致发光峰却红移至绿光区域(532 nm), 得到绿色单峰发光. 紫外吸收光谱、荧光发射光谱、红外光谱以及原子力显微镜(AFM)图像的结果证明, 造成PAF电致发绿光的机制为聚合物分子间聚集.  相似文献   

8.
Despite the exceptional efficiency of perovskite solar cells (PSCs), further improvements can be made to bring their power conversion efficiencies (PCE) closer to the Shockley-Queisser limit, while the development of cost-effective strategies to produce high-performance devices are needed for them to reach their potential as a widespread energy source. In this context, there is a need to improve existing charge transport layers (CTLs) or introduce new CTLs. In this contribution, we introduced a new polyelectrolyte (lithium poly(styrene sulfonate (PSS))) (Li:PSS) polyelectrolyte as an HTL in inverted PSCs, where Li+ can act as a counter ion for the PSS backbone. The negative charge on the PSS backbone can stabilize the presence of p-type carriers and p-doping at the anode. Simple Li:PSS performed poorly due to poor surface coverage and voids existence in perovskite film as well as low conductivity. PEDOT:PSS was added to increase the conductivity to the simple Li:PSS solution before its use which also resulted in lower performance. Furthermore, a bilayer of PEDOT:PSS and Li:PSS was employed, which outperformed simple PEDOT:PSS due to high quality of perovskite film with large grain size also the large electron injection barrier (ϕe) impeded back diffusion of electrons towards anode. As a consequence, devices employing PEDOT:PSS / Li:PSS bilayers gave the highest PCE of 18.64%.  相似文献   

9.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

10.
《Electroanalysis》2018,30(9):2131-2144
Increasing demand of alternative energy sources leads to the development of new electrocatalytic materials for fuel cells. In present work, we report the synthesis of rGO/PEDOT : PSS (reduced graphene oxide/ Poly (3,4‐ethylenedioxythiophene) : Polystyrene sulfonate) nanocomposite by in‐situ polymerization method using EDOT as precursor and the nanocomposite is used as anode catalyst for methanol oxidation. Structural and chemical characterizations such as XRD, FTIR and Micro‐Raman confirm the formation of the nanocomposite. From TEM image, growth of nanofibrous PEDOT : PSS on rGO nanosheets is observed. Electrochemical characterizations of rGO/PEDOT : PSS/ITO electrode are performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Chronoamperometry (CA) measurements. Methanol oxidation reactions are performed in 0.5 M NaOH solution. The anodic current of the nanocomposite coated ITO is found be 37.5 mA at 0.59 V due to methanol electro‐oxidation and retentivity of the electrode is 92 % of initial scan after 800 cycles. The chronoamperometric results reveal that the nanocomposite modified electrode exhibits better stability with retention factor of 42.4 % up to 3000 seconds. The rGO/PEDOT : PSS/ITO electrode exhibits enhanced electrocatalytic activity towards methanol oxidation reaction due to larger surface area and excellent conductivity of rGO nanosheet.  相似文献   

11.
A green and facile method has been developed for the room temperature and aqueous solution preparation of NiOx film as anode buffer layers for polymer solar cells (PSCs). The NiOx buffer layer is prepared simply by spin-coating nickel acetylacetonate precursor-based aqueous solution onto ITO substrate at room temperature in air. UV-ozone post-treatment promotes the formation of dipolar NiOOH species on the film surface, resulting in the anode buffer layer with suitable work function. PSCs have been fabricated with the device structure of ITO/NiOx/photoactive layer/PFN/Al. The power conversion efficiencies of the PSCs based on PTB7:PC71BM blends (8.43%) and P3HT:PC71BM blends (3.04%) with NiOx anode buffer layer are comparable to those with the commonly used PEDOT:PSS anode buffer layer. In addition, the devices made with NiOx buffer layer exhibit much better air stability than those with PEDOT:PSS. These results indicate that the water solution processed NiOx film at room temperature in air is a promising anode buffer layer for efficient and stable PSCs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 747–753  相似文献   

12.
In this study CO2, H2/H2O and H2O low pressure plasma treatment of poly(tetrafluoroethylene) (PTFE) foils and of thin plasma deposited fluorocarbon polymer (PDFP) films with a structure close to PTFE was investigated. The properties of the plasma were analyzed by mass spectroscopy (MS) and optical emission spectroscopy (OES). The modified fluorocarbon surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry, electrokinetic measurements and dynamic contact angle measurements in order to find optimized treatment conditions. The results of the surface modification were compared with respect to the efficiency of the plasma treatment and the stability of the modification effect at different ambient conditions. It was shown that the H2O plasma treatment is the most effective process for the intended modification. The hydrophobic PTFE surface was converted into a more hydrophilic one. The introduced radicals after the H2O plasma treatment can be utilized subsequently for post plasma reactions such as grafting processes.  相似文献   

13.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

14.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

15.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

16.
基于溶液法加工制备的聚合物太阳能电池的高温热稳定性是决定器件能否兼容后续高温热封装工艺, 如热压封装、高温原子层沉积(ALD)等的一个关键. 本文分别利用聚(3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)和MoO3作为阳极缓冲层, 以及ZnO和LiF 作为阴极缓冲层, 制备了结构为氧化铟锡(ITO)/阳极缓冲层/3-己基取代聚噻吩:(6, 6)-苯基C61-丁酸甲酯(P3HT:PC61BM)/阴极缓冲层/Al 的太阳能电池, 系统地比较研究了不同界面缓冲材料对器件光电转换性能及稳定性的影响, 特别是在高温煺火条件下器件的性能稳定性差异. 结果表明, 聚合物太阳能电池的热稳定性同器件的结构以及所用的缓冲层材料有密切的相关性. 其中, 利用MoO3及ZnO分别作为阳极与阴极界面修饰层的P3HT:PC61BM器件在120-150 ℃的温度范围内能够较好地保持器件的光电转换性能. 这一结果为后续需要高温封装工艺的器件提供了有意义的结构优化指导. 此外, 研究结果还表明利用ZnO作为阴极缓冲层能够改善器件的长时间稳定性.  相似文献   

17.
Electrochemical copolymerization of 3-trimethoxysilanyl-propyl-N-aniline (TMSPA) with 2,5-dimethoxyaniline (DMA) was performed in 1 M HCl aqueous solution for different feed ratios of TMSPA using cyclic voltammetry. The deposition rate of TMSPA–DMA copolymer is higher than that of PTMSPA but lower than that of PDMA. (TMSPA-co-DMA) film was deposited using electrochemical polymerization as conducting film on indium tin oxide (ITO) electrode and used as an electrode in an electrochromic device. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was spin-coated on ITO as the other electrode. Carboxyl-terminated- butadiene-acrylonitrile (CTBN) blended with LiClO4 was used as solid polymer electrolyte. A total solid electrochromic device was assembled as follows: ITO|P(TMSPA-co-DMA)LiClO4-CTBNPEDOT:PSS|ITO. The columbic efficiency of the devices reached to 104% for P(TMSPA-co-DMA) film with TMSPA feed ratio of 0.25. The optical contrast (ΔT, %) of the single electrode and the device were determined by UV–vis spectroelectrochemical studies. The stability of ΔT was improved during color switching from +1.5 to −1.5 V (vs. PEDOT) for this device. The device was pale yellow at −1.5 V and blue at +1.5 V.  相似文献   

18.
骆开均  蒋世平  张藜芳  朱卫国  王欣 《应用化学》2011,28(10):1155-1160
在聚2,7-(9,9-二辛基)芴(PFO)和30%的2-(对联苯基)-5-(对叔丁基苯基)-1,3,4-噁二唑(PBD)主体材料中掺杂短磷光寿命的meso-四(对正葵酰氧基苯基)卟啉铂(TDPPPt),制成聚合物基发光器件。 器件结构为:ITO/PEDOT∶PSS/PVK/PFO+30%PBD∶TDPPPt/Ca/Al(ITO:氧化铟锡;PEDOT:聚3,4-乙撑二氧噻吩;PSS:聚苯乙烯磺酸盐;PVK:聚乙烯基咔唑)。 当客体掺杂浓度≥3%时,器件给出饱和的红色发射。 当驱动电压从7 V升高至14 V时,器件发光色度保持不变,CIE(国际发光照明委员会)色坐标稳定在(0.66,0.28)左右。 器件的最大亮度和电流效率分别为1.390 cd/m2和1.34 cd/A。 在电流密度100×10-3和150×10-3 A/cm2时,电流效率分别为1.18和0.99 cd/A,器件在高电流密度下具有良好的稳定性。  相似文献   

19.
在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.  相似文献   

20.
苏斌  刘莹  朱恩伟  车广波 《化学通报》2020,83(8):698-703
钙钛矿太阳能电池(PSCs)因易于制备、生产成本低和能量转换效率高而受到广泛关注。聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT∶PSS)由于具有易低温加工、透光度高和适宜空穴迁移率等特点而成为PSCs中空穴传输层的研究热点。本文简述了倒置PSCs的结构及工作原理,重点介绍了掺杂PEDOT∶PSS空穴传输层在PSCs领域的研究现状。分别从有机化合物掺杂剂、无机化合物掺杂剂和表面活性剂掺杂剂三个类别概述了掺杂PEDOT∶PSS空穴传输层对PSCs性能的影响。最后,对该领域存在的问题提出潜在措施以改善PEDOT∶PSS掺杂层在PSCs中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号